Вихревые трубки. Схема, описание

Вашему вниманию и обсуждению представлен твердотопливный котел на угле, вобравший на мой взгляд все лучшие технологии прошлого и современности.

Данный котел сможет не только обогреть дом, но и вырабывать электроэнергию и пиролизный газ для бытового использования в плите итд. Е

Конечно, я не теплотехник, и не печник, но судя по тем моделям современных котлов, что есть в продаже, вспоминаю поговорку: «Ковчег построил любитель, профессионалы построили "Титаник "».

Предыстория.

Подбирая твердотопливный котел отопления, изучил почти всех производителей котлов для использования в частном доме и такое ощущение, что «современные» котлы выпускают в сараях причем с низкой эффективностью и из консервных банок! Толщина металла у основной массы продавцов составляет от 3 мм до максимум 6 мм, а в «гарантийных обязательствах написано: котел может служить до 7 лет, «при правильной эксплуатации». То есть вам не кто не гарантирует, что эта жестянка не прогорит раньше первого сезона эксплуатации!

Все это говорит о том, что производители котельного оборудования не заинтересованы в выпуске хороших и долговечных котлов. Когда изучаешь сколько такие котлы потребляют угля или дров удивляешь цифры фантастические от 3 до 10 кг. топлива в ЧАС!

В связи с удручающей ситуацией на рынке котлов, пришлось изучить опыт начиная от древности до наших дней. Требования которые хотелось бы видеть от СОВРЕМЕННОГО КОТЛА, не то что сейчас продают, из консервных банок с низким КПД.

На мой взгляд твердотопливный котел отопления должен отвечать следующим требованиям:

1) Простой и надежный

2) Энергонезависимый

3) Потреблять минимум топлива

4) Производить тепловую энергию

5) Производить Древесный газ (ПИРОЛЕЗНЫЙ) для подключения плиты и других источников потребления.

Для решения этих задач пришлось изучать опыт от древних Аркаимцев до современных котлов с циркулирующим кипящим слоем (которые почему не производят для домашнего использования)
Привожу план схему КОТЛА, разработанного мною, где применены следующие технологии:

1) Трубка Ранке. (на рисунке с права от котла) За основу взята технология котлов с циркулирующим кипящим слоем, что способствует более тщательному сгоранию топлива. За счет использования «трубы Ранке» происходит разделение вихревых воздушных потоков на горячий и холодный, это позволяет несгоревшие частички топлива возвращать обратно в топливную камеру, а более горячий воздушный поток поднимающийся вверх использовать для разогревания воды до состояния пара. Разогретый пар можно использовать для небольшой паровой электро турбины .

2) Сухая возгонка древесины. Технология получения и очищения ДРЕВЕСТНОГО ГАЗА (пиролизного) разработанная Петр Григорьевичем Соболевским в 1811 году для освещения улиц (термолампами) и отопления домов. Эта технология ПРОСТА и прекрасно себя зарекомендовала, с успехом применялась несколько десятилетий для освещения крупных городов России: Москва, Санкт- Петербург, итд.

Принцип действия сухой возгонки древесины понятен из этих картинок:

Принципиальная схема «термолампа»
конструкции П. Г. Соболевского (1811 г.):
1 – печь; 2 – поддувало или зольник; 3 – зольная решетка;
4 – дверцы печные; 5 – чугунный цилиндр; 6 – отверстие для загрузки
дров; 7 – пространство около цилиндра, через которое проходит пламя;
8 – дымовая труба; 9 – задвижка в трубе; 10 – конец цилиндра,
сообщенный с холодильником; 11 – холодильник; 12 – приемный сосуд
для кислоты и дегтя; 13 – сосуд, наполненный до половины водой;
14 – медная труба, пропускающая газ через воду из сосуда 12 в сосуд 13;
15 – кожаная трубка с краном, по которой очищенный газ поступает
в газгольдер; 16 – газгольдер; 17 – кожаная трубка, выводящая газ
к лампам; 18 – линия, показывающая, до какой высоты может
подняться колокол газгольдера; 19 – отводная трубка для отвода
излишнего газа.

1) Создание реактивной тяги в печи .

а) Смысл технологии реактивной тяги в печи сводится к подводу охлажденного воздуха в зону горения. Для этого воздух в поддувало через трубу подводят из колодца или охлаждают прогоняя через более холодные слои земли, это способствует более интенсивному и жаркому горению топлива.

б) Создание вихревых потоков. В поддувало печи подводится воздух не с одной стороны, с двух противоположных сторон - это создает эффект «сквозняка» собственно - это и есть вихревой поток. Этот метод применяли в древнем городе Аркаиме.

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.

Рис. 2.3.1. Схема вихревой трубы.

Как известно, в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии

.

Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом

,

где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.

Рис. 2.3.2. Температура газа на выходе из ВТ.

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.(195).

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

Эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики.

Для отопления частного дома и квартиры, часто используются автономные генераторы. Предлагаем рассмотреть, что такое индукционный вихревой теплогенератор, его принцип работы, как сделать устройство своими руками, а также чертежи приборов.

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Фото – Мини-теплогенератор вихревого типа

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).


Фото – Вихревой теплогенератор

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

Фото – Схема вихревого теплогенератора

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.


Фото – Принцип работы генератора гидротипа

Достоинства вихревого теплогенератора :

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы : это высокая стоимость и редкое применение на практике.

Как сделать теплогенератор своими руками

Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.

Фото – Вихревой теплогенератор Потапова

Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.

На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.

Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.

Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.

По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.

Формула представляет собой следующее:

Епот = – 2 Екин

Где Екин =mV2/2 – это кинетическое движения Солнца;

Масса планеты – m, кг.

Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:


Фото – Модификации вихревых теплогенераторов

Обзор цен

Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.

Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:

Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов - это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» - это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор - диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор . Дисковый активатор - это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

Иллюстрация Описание сферы применения

Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке - 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке - 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении - в котельной, подвале и т.п


Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста - достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент - это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

Иллюстрации Общее описание конструкций кавитационных теплогенераторов

Общий вид агрегата . На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме - это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами . На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.


Теплогенератор с встречными резонаторами . На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

Иллюстрации Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе . На этой схеме можно видеть следующие детали:

1 - корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 - вал, на котором закреплен роторный диск;

3 - роторное кольцо;

4 - статор;

5 - технологические отверстия проделанная в статоре;

6 - излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.


Схема совмещения роторного кольца (3) и статора (4) . На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу


Поворотное смещение роторного кольца и статора . На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

Готовый тепловой генератор.

В зависимости от типа устройства изменяется и методика его изготовления. Стоит ознакомиться с каждым типом прибора, изучить особенности производства, прежде чем браться за работу. Простой способ изготовить вихревую трубу Ранке своими руками – использовать готовые элементы. Для этого понадобится любой двигатель. При этом прибор большей мощности способен подогреть больше теплоносителя, что увеличит продуктивность системы.

Для успешного сооружения следует найти готовые решения. Создать вихревой теплогенератор своими руками, чертежи и схемы которого будут в наличии, можно без особых сложностей. Для проведения работ по сооружению понадобится следующий инструментарий:

  • болгарка;
  • железные уголки;
  • сварка;
  • дрель и набор из нескольких сверл;
  • фурнитура и набор ключей;
  • грунтовка, красящее вещество и кисточки.

Вихревой двигатель — это один из источников альтернативной энергии для отопления дома.

Стоит понимать, что роторные приборы издают достаточно сильный шум при работе. Но в сравнении с прочими устройствами они характеризуются большей производительностью. Чертежи и схемы для изготовления вихревого теплогенератора своими руками можно найти повсеместно. Стоит понимать, что работа будет выполнена успешно исключительно при полном соответствии технологии производства.

Установка насоса вихревого генератора теплоты и сооружение корпуса

Кожух данного устройства изготавливается в виде цилиндра, который должен закрываться со сторон каждой основы. На каждом боку расположены сквозные отверстия. Используя их, можно подключить вихревой теплогенератор своими руками к системе обогрева дома. Основная особенность такого изделия заключается с том, что внутри кожуха, возле входного отверстия устанавливается жиклер. Данное приспособления должно подбираться индивидуально для каждого отдельно взятого случая.

Схема вихревого двигателя.

Процесс производства включает в себя следующие пункты:

  • отрезание трубы необходимого размера (около 50-60 см);
  • нарезка резьбы;
  • изготовление пары колец из трубы того же диаметра с длиной примерно 50 мм;
  • приваривание крышек к местам, где не нарезалась резьба;
  • вырезание двух отверстий в центре каждой крышки (одно для подключения патрубка, второе – для жиклера);
  • сверление фаски рядом с жиклером для получения форсунки.

Установка насоса вихревого двигателя проводится после подбора агрегата необходимой мощности. При покупке стоит придерживаться двух правил. Первое – устройство должно быть центробежным. Второе – выбор будет целесообразным лишь в случае, когда устройство будет оптимально функционировать в паре с установленным электродвигателем.

Утепление вихревого двигателя

Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:

Готовый тепловой генератор.

  • стекловата;
  • минеральная вата;
  • базальтовая вата.

Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: « .

В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.

Подведение итогов

Если все правила изготовления конструкции были учтены, то вихревой генератор прослужит долгое время. Не стоит забывать, что от грамотной установки прибора тоже зависит многое в системе отопления. В любом случае изготовление такой конструкции из подручных средств обойдется дешевле приобретения готового приспособления. Однако для оптимального функционирования устройства следует ответственно подойти к процессам изготовления корпуса и обшивки тепловой изоляции.