В каких пределах изменяется вакуумметрическое давление. Абсолютное и избыточное давление

Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление . Следовательно, абсолютное давление равно

.

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от атмосферного давления, т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

.

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

.

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

.

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Например:

- абсолютное давление равно 1,5 кг/см 2 ;

- избыточное давление равно 0,5 кг/см 2 ;

- вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль — давление, вызываемое силой , равномерно распределенной по нормальной к ней поверхности площадью , т.е. . Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа).

В термическое уравнение состояния, как и в большинстве аналитических выражений, описывающих физические законы, входит абсолютное давление, обусловленное молекулярно-кинетической теорией. Существуют приборы, позволяющие измерить величину этого давления, однако, устройство их достаточно сложное, а стоимость высокая. На практике проще организовать измерение не абсолютной величины давления, а разности двух давлений: искомого и атмосферного (барометрического). Знание величины атмосферного давления, измеренного с помощью того или иного типа барометра, позволяет легко получить и величину абсолютного давления. Часто достаточную точность обеспечивает знание средней величины атмосферного давления. Если определяемая величина давления больше атмосферного, то положительная величина разности давлений называется избыточным давлением, которое измеряется различными типами манометров. Если определяемая величина давления меньше атмосферного, то избыточное давление является отрицательной величиной. Абсолютное значение разности давлений называется в этом случае вакуумметрическим давлением ; оно может быть измерено посредством вакуумметров различного типа.

Если измеряемое давление больше атмосферного, то Рабе = Ризб. + Ратм.; если измеряемое давление меньше атмосферного,

ТО Рабе. = Ратм. - Рва* И Рвак = - Ризб.

Размерность давления [р] = ML -| Т “ 2 . Единица давления в Международной системе единиц называется паскаль (Па). Паскаль равен давлению, вызываемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м 2: 1 Па = 1 Нм -2 = 1 кг м 1 с" 2 . В США, Великобритании и некоторых других странах на практике давление часто измеряют в фунтах на квадратный дюйм (lb/sq.inch или psi). ! бар = Ю 5 Па = 14,5 фунт/кв. дюйм.

Длинная (около 1 м), запаянная с одного конца трубка, заполненная ртутью и опущенная открытым концом в сосуд со ртутью, сообщающийся с атмосферой, называется ртутным барометром. Он позволяет определять давление атмосферы по высоте столбика ртути, заполняющего трубку. Прибор впервые описан Е.Торри-челли (Е. Torricelli) в 1644 г. Проведение систематических количественных измерений давления атмосферы с помощью ртутного барометра предложено Декартом в 1647 г. Действие прибора основано на том, что давление в области над поверхностью ртути в трубке пренебрежимо мало (объем пространства над ртутью в трубке называется торричеллиевой пустотой). В этом случае из условий механического равновесия ртути следует связь между давлением атмосферы и высотой столба ртути: ро = pgh. Давление паров ртути в торричеллиевой пустоте при температуре Т = 273 К составляет 0,025 Па.

Давление атмосферы (или атмосферное давление) зависит от высоты места наблюдения и погодных условий. В обычных условиях на уровне моря высота столба ртути составляет около 76 см и уменьшается при подъеме барометра.

В геофизике принята модель стандартной атмосферы , в которой уровню моря соответствуют температура Т =288.15 К (15°С) и давление ро =101325,0 Па. Состояние газа с таким же давлением при температуре Т = 273.15 К (0°С называется нормальными условиями. Близкие к величине атмосферного давления значения рт = 9.81 10 4 Па, р в =Ю 5 Паи рр =1.01 ЗЛО 5 Па используются в естествознании и технике для измерения давлений и называются технической атмосферой (рт), баром (рв) и физической атмосферой (рр).

При постоянной температуре атмосферы изменение давления с высотой Л описывается барометрической формулой, учитывающей сжимаемость воздуха:

п _ _ „ -ЦвИ/ЯТ

Здесь ц - молярная масса воздуха р = 29=10" 3 кг моль g - ускорение свободного падения вблизи поверхности Земли, Т - абсолютная температура, а Я - молярная газовая постоянная Я =8.31 Дж К" 1 моль" .

Несколько задач

Определить силу /?, которую надо приложить к штоку для движения поршня с постоянной скоростью. Трением пренебречь.

И = 20мм, (і-мм.

Ратм =750мм рт. ст[тт Hg

  • 4.3.1. Р=2 бар изб. р 2 = 6 бар изб .
  • 4.3.2. р { = 0,5 бар вак. р 2 = 5,5 бар изб
  • 4.33. р х - 80 рві изб р 2 = 10 рві изб
  • 4.3.4. р, =6-10 5 Па изб p 2 = 30 psi изб.
  • 4.3.5. pj = 10 psi вак.

/ 27.09.2018

Определить абсолютное и вакуумметрическое давление в резервуаре. Абсолютное, избыточное и дифференциальное давление – нулевая отметка. Что будем делать с полученным материалом

Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением

абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление. Следовательно, абсолютное давление равно

Рисунок 1 Пример схемы компоновки. Рисунок 2 Кривые превышения давления для зданий в примере. После того, как для определенного местоположения было разработано одно или несколько кривых превышения избыточного давления, необходимо оценить риск здания. Обычно это связано с применением приемлемости риска или критерием толерантности к риску для занятого здания и оценки способности здания выдерживать расчетное избыточное давление. Общим подходом к этой части анализа является оценка избыточного давления в здании, соответствующем конкретной вероятности воздействия.

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от , т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

Если такого уровня избыточного давления достаточно, чтобы нанести ущерб зданию, что приводит к травмам его пассажиров, вероятность взрыва становится невыносимой, и требуется некоторая форма снижения риска. Для большинства зданий «обычной» конструкции эта величина избыточного давления не способна нанести значительный ущерб зданию или повредить жителей зданий. Некоторые окна могут быть повреждены, и может произойти другой незначительный урон, но маловероятно, что здание потерпит структурный сбой.

Если мы предположим, что здания имеют стальную форму с металлическим сайдингом, 7 фунтов на квадратный дюйм могут нанести значительный ущерб в той степени, в которой здания могут пострадать. Ожидается, что здания не разрушатся, но могут испытывать значительную деформацию и, вероятно, будут испытывать потерю большей части внешней металлической обшивки. Этот тип результата указывает на то, что контрольные и лабораторные здания должны быть перемещены в более отдаленное место или модернизированы, чтобы выдерживать избыточные давления до 7 фунтов на квадратный дюйм, чтобы защитить пассажиров от травм.

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

Связь вероятности с последствием позволяет рассматривать события больших последствий в свете их низкой вероятности и показывает, что наиболее вероятными событиями являются события с малым воздействием избыточного давления. Моделирование взрывов предсказывает как избыточное давление, так и импульс для любого данного взрыва.

Применение кривых превышения избыточного давления представляет собой существенное улучшение в определении местоположения здания исключительно на результатах анализа последствий. Если для здания не существует значительных ядовитых или пожароопасных опасностей, такой анализ может стать основой для принятия решений о размещении.

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Бабита имеет степень электротехники и преподавала студентам-инженерам и студентам, готовящимся к поступлению в медицинские и стоматологические кабинеты. В этом уроке мы определим термины абсолютное, атмосферное и калибровочное давление и изучим уравнение, связывающее эти три члена. Мы также увидим примеры калибровочного давления.

Вы едете по шоссе и замечаете, что автомобиль слегка тянут в сторону. Итак, вы берете машину своему механику Майку, эксперту-механику, который сразу же замечает, что шины выглядят слегка спущенными. Он использует манометр для проверки шин и говорит, что передние шины имеют значение 29 фунтов на квадратный дюйм. Он также проверяет сторону шины и читает идеальное давление для ваших колес - 32 фунта на квадратный дюйм; поэтому он раздувает все четыре шины до 32 фунтов на квадратный дюйм. Майк советует регулярно проверять шины, чтобы они находились в идеальном манометре.

Например:

Абсолютное давление равно 1,5 кг/см 2 ;

Избыточное давление равно 0,5 кг/см 2 ;

Вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Вы едете, чувствуя себя в безопасности, и это происходит, когда вы начинаете задаваться вопросом: что такое манометрическое давление? На уровне моря воздух над поверхностью имеет вес из-за тяги силы тяжести. Этот вес можно почувствовать на поверхности, на которую он нажимает, и мы знаем это давление как атмосферное давление, обозначенное как Патм. Итак, если мы будем продолжать расти на высоте, на этом уровне меньше воздуха, поэтому вес соответственно уменьшается. В конце концов, мы достигнем точки, где нет воздуха.

Давление в этой точке равно нулю, поэтому давление, измеренное относительно давления в вакууме, называется абсолютным давлением, обозначаемым Пабсом. Разница между абсолютным давлением и атмосферным давлением - это то, что мы называем манометрическим давлением. Его можно рассчитать, если мы знаем абсолютное и атмосферное давление, используя эту формулу.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль - давление, вызываемое силой, равномерно распределенной по нормальной к ней поверхности площадью, т.е.. Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа):

Манометрическое давление обычно дается в фунтах на квадратный дюйм. Итак, когда ваш механик измеряет давление в шинах и заполняет воздух до 32 фунтов на квадратный дюйм, он измеряет внутреннее давление шины, которое превышает атмосферное давление. Атмосферное давление на уровне моря составляет 7 фунтов на квадратный дюйм.

Манометрическое давление может быть измерено для всех жидкостей - воздуха, а также жидкостей. Примером может служить ртутный барометр, который указывает на атмосферное давление. Это был единственный способ измерить атмосферное давление несколько десятилетий назад. В этом случае стеклянная трубка, которая закрыта на одном конце, заполнена ртутью, а затем помещена вверх дном в контейнер с ртутью. Когда ртуть падает под действием силы тяжести, она создает вакуум в верхней части закрытого конца трубки.

В технике в настоящее время в некоторых случаях продолжают применять также техническую МКГСС (метр, килограмм-сила, секунда, а) и физическую СГС (сантиметр, грамм, секунда) системы единиц. Используются также внесистемные единицы - техническую атмосферу и бар:

Не следует также смешивать техническую атмосферу с физической, которая все ещё имеет некоторое распространение в качестве единицы давления:

Когда атмосферное давление увеличивается, давление на поверхность ртути в контейнере увеличивается и приводит к увеличению количества ртути в стеклянную трубку; поэтому уровень ртути внутри стеклянной трубки соответственно увеличивается. Затем вы можете прочитать атмосферное давление как значение, вытравленное на стеклянную трубку на верхнем уровне колонны ртути.

Найдите вес, поднятый гидравлическим прессом, когда сила, приложенная к плунжеру, составляет 500 Н. 3 Задача 3Вычислите давление из-за столбца 3 дюйма. Найдите интенсивность давления на поверхности двух жидкостей и на дне бака 8 Задача 7 Диаметры маленького поршня и большого поршня гидравлического домкрата 3 см и 10 см соответственно. Найдите груз, поднятый большим поршнем, когда: поршни находятся на одном уровне. маленький поршень на 40 см выше большого поршня. Абсолютное давление: определяется как давление, которое измеряется относительно абсолютного давления вакуума. Избыточное давление: определяется как давление, которое измеряется с помощью измерительного прибора, давление, в котором атмосферное давление принимается в качестве опорной точки. Атмосферное давление на шкале обозначается как ноль. Вакуумное давление: определяется как давление ниже атмосферного давления. Манометры определяются как устройства, используемые для измерения давления в точке в жидкости путем балансировки колонны жидкости тем же или другим столбцом текучей среды. Они классифицируются как: простые манометры, дифференциальные манометры. 2 механические датчики. Механические датчики определяются как устройства, используемые для измерения, давления путем балансировки колонны жидкости пружиной или мертвой массой. Центр трубы на 12 см ниже уровня ртути в правой конечности. Другой конец манометра открыт для атмосферы. Правая часть манометра содержит ртуть и открыта для атмосферы. Контакт между водой и ртутью находится в левой конечности. Опишите порядок в обоих случаях. Показания манометра, приведенные на рисунке, показывают, когда сосуд пуст. Воды. 23. Для более глубокого изучения вакуумных систем прочтите «Установка вакуума на работу», «Сократите экономию энергии от пневматических систем», «Обработка вакуума» и «Проектирование с помощью вакуумных и присосок».

2.1.3. Свойства гидростатического давления

Гидростатическое давление обладает двумя основными свойствами.

1-ое свойство. Силы гидростатического давления в покоящейся жидкости всегда направлены внутрь по нормали к площадке действия, т.е. являются сжимающими.

В промышленной вакуумной системе вакуумный насос или генератор удаляет воздух из системы, чтобы создать перепад давления. Однако вычисление рабочих сил или изменение объема в вакуумных системах требует преобразования отрицательного избыточного давления или абсолютного давления. Грубая, до 28 дюймов. . Из них только вентилятор является экономичным выбором для автономных или специализированных вакуумных систем. В большинстве применений важно, чтобы генератор мог вытащить необходимый вакуум за максимально короткий промежуток времени, чтобы минимизировать потребление воздуха.

Это свойство доказывается от противного. Если предположить, что силы направлены по нормали наружу, то это равносильно появлению в жидкости растягивающих напряжений, которых она воспринимать не может (это вытекает из свойств жидкости).

2-ое свойство . Величина гидростатического давления в любой точке жидкости по всем на­правлениям одинаково, т.е. не зависит от ориентации в пространстве площадки, на которую оно действует

В физике разные выражения используются для физического количества «давления». Они должны быть объяснены здесь для лучшего понимания. Давление, измеренное относительно атмосферного давления или атмосферного давления, называется избыточным давлением. Внутри помещения, например, избыточное давление возникает, когда в то же время объемный объем больше проникает в пространство, чем возникает. Если давление в определенном объеме, например сосуд, меньше, чем давление окружающей среды вне сосуда, существует отрицательная разность давлений.

Это также называют вакуумом. При абсолютном давлении измеряется разность идеального вакуума. Поэтому внешние впечатления, такие как погода или высота над уровнем моря, не влияют на результат измерения. Давление всегда связано с абсолютной нулевой точкой - абсолютным вакуумом. Известным показателем абсолютного давления является давление окружающей среды. Все физические формулы на предмет давления обычно работают с данными абсолютного давления. Это также относится к формулам, представленным на этих страницах.

где - гидростатические давления по направлению координатных осей;

То же по произвольному направлению.

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и (рис. 2.3).

Если необходимо провести различие, это делается с метками для относительного давления и для абсолютного давления. Измерение относительного давления всегда измеряет разницу с преобладающим давлением окружающей среды. Однако на это влияет соответствующее расстояние до уровня моря и изменения погоды и постоянно меняется. Поэтому спецификация относительного давления всегда относится к текущему атмосферному давлению и зависит от него. Относительно этого мы говорим о избыточном давлении, когда давление больше, чем давление окружающей среды, или когда давление ниже, чем давление окружающей среды.

Рис. 2.3. Схема для доказательства свойства

о независимости гидростатического давления от направления

Введем обозначения: - гидростатическое давление, действующее на грань, нормальную к оси;

Давление на грань, нормальную к оси;

Давление, действующее на наклонную грань;

Таким образом, испытательное давление всегда задается как относительное давление. Соответствующие регуляторы давления автоматически устанавливают требуемое испытательное давление как разность давлений по отношению к текущему окружающему давлению. Соответствующий дисплей давления всегда ссылается на давление окружающей среды.

Однако на некоторых устройствах испытательное давление измеряется датчиками абсолютного давления. В этом случае давление указывается со ссылкой на абсолютный вакуум. Известной системой измерения абсолютного давления является барометр. Он измеряет текущее преобладающее атмосферное давление против абсолютной нулевой точки.

Площадь этой грани;

Плотность жидкости.

Запишем условия равновесия для тетраэдра (как для твердого тела) в виде трех уравнений проекций сил и трех уравнений моментов:

При уменьшении в пределе объема тетраэдра до нуля система действующих сил преобразуется в систему сил проходящих через одну точку, и, таким образом, уравнения моментов теряют смысл.

Таким образом, внутри выделенного объема на жидкость действует единичная массовая сила, проекции ускорений которой равны , , и. В гидравлике принято массовые силы относить к единице массы, а так как, то проекция единичной массовой силы численно будет равна ускорению.

где,- проекции единичной массовой силы на оси координат;

Масса жидкости;

Ускорение.

Составим уравнение равновесия выделенного объема жидкости в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости:

где - проекция силы от гидростатического давления;

Проекция силы от давления;

Проекция массовой силы, действующей на тетраэдр.

Разделив уравнение (2.2) на площадь , которая равна пло­щади проекции наклонной грани на плоскость , т. е. , получим

При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель , также стремится к нулю, а давленияи остаются величинами конечными.

Следовательно, в пределе получим

Аналогично составляя уравнения равновесия вдоль осей и, находим

Так как размеры тетраэдра , и и наклон площадки взяты произвольно, то, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково. Что и требовалось доказать.

Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении невязкой (идеальной) жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.

В общем случае давление в точке зависит от координат рассматриваемой точки, а при неустановившемся движении жидкости может изменяться в каждой данной точке с течением времени: .

Несмотря на всю тривиальность и простоту вопроса, случается, что люди не вполне понимают суть понятий «абсолютное давление», «избыточное давление», «дифференциальное давление», (нормальное) «атмосферное давление» и др., путая их или не понимая их не только количественное, но и качественное отличие друг от друга. На этой странице мы решими написать несколько слов о понятии различных давлений. Мы не стремились представить ниже полную информацию по этому вопросу - ее можно без труда найти, например, в Википедии - а старались, наоборот, изложить основной смысл этих понятий кратко.

Абсолютное давление

Понятие «абсолютного давления» относится к способу указания давления относительно точки отсчета. Абсолютное давление - это то давление, для указания которого используется, в качестве точки отсчета, абсолютный вакуум. Предполагается, что не может существовать давления, меньшего, чем абсолютный вакуум - следовательно, относительно него любое давление может быть обозначено положительным числом.

То абсолютное давление, которое находится между абсолютным вакуумом и давлением, которое принято считать имеющемся на уровне моря (нормальное атмосферное давление = 101325 Па ≈ 760 мм ≈ 1 абсолютный бар), является частичным вакуумом.

То абсолютное давление, значение которого выше уровня нормального атмосферного давления, может быть также обозначено как избыточное давление, с точкой отсчета, за которую принято стандартное атмосферное давление. Абсолютное давление равно избыточному давлению плюс атмосферному давлению.

На письме, то, что указывается именно абсолютное давление, иногда подчеркивают литерой а как в русском, так и в английском и немецком языках, например: бар(а). Например, давление на уровне моря примерно составляет 1 бар(а).

Избыточное давление

Понятие избыточного давления также, как и абсолютного давления, относится к точке отсчета для указания давления. Избыточное давление - это то давление, для указания которого используется, в качестве точки отсчета, нормальное атмосферное давление.

Избыточное давление равно абсолютному давлению минус атмосферное давление. Например, давление на уровне моря, которое составляет 1 бар(а), может быть также указано как избыточное давление, составляющее 0 бар(и).

На письме указание на избыточное давление иногда подчеркивается литерой и в русском языке, g в английском (от слова gauge , то есть прибор[ное давление] - т.к. на манометрах обычно отображается именно избыточное давление), и литерой ü в немецком (от слова Überdruck , то есть «сверхдавление»).

Атмосферное давление, нормальное атмосферное давление

Понятие атмосферного давления качественно отличается от понятий избыточного и абсолютного давления, и относится не к точке отсчета, а к месту измерения. Атмосферное давление - это давление, имеющееся в какой-либо точке измерения на Земле. Атмосферное давление может сильно варьироваться в зависимости от высоты и погодных условий. Что касается точки отсчета, то атмосферное давление - всегда абсолютное.

В качестве нормального атмосферного давления приняты, в рамках разных стандартов, разработанных разными организациями, разные значения - наиболее распространенным, однако, является принятие за нормальное атмосферного давления 101325 Па. Среди европейских производителей оборудования принято также условно считать это давление соответствующим 1 бару.

Дифференциальное давление

Дифференциальное давление - это разница между давлением в двух точках измерения. Оно не является ни абсолютным, ни избыточным, и используется обычно как показатель падения давления на каком-либо оборудовании или его составляющем компоненте (чаще всего - на фильтрах для очистки сжатого возудха и газов).

Рассмотрим закрытый резервуар, в котором жидкость образует свободную поверхность (рис. 2.4, а ). Подсоединим к боковой поверхности резервуара изогнутую стеклянную трубку, открытую в атмосферу. Если на свободной поверхности действует атмосферное давление (р 0 = р ат), то по закону сообщающихся сосудов для однородной жидкости в резервуаре и в стеклянной трубке поверхности жидкостей будут находиться на одном уровне. По уровню жидкости в стеклянной трубке можно определить значение давления на уровне подсоединения трубки, а также значение давления, действующего на свободной поверхности жидкости. Такая стеклянная трубка носит название пъезометр .

Пъезометр - это прибор жидкостного типа, предназначенный для измерения давления.

а ) б ) в )

Рис. 2.4. Схема к определению давления

Подадим некоторое количество воздуха в закрытый резервуар (рис. 2.4, б ). В этом случае давление на свободной поверхности жидкости превысит атмосферное (р 0 > р ат), уровень жидкости в пъезометре превысит уровень жидкости в резервуаре. Плоскость M N , к которой подсоединён пъезометр, является поверхностью равных давлений, то есть р M = р N . Согласно основному уравнению гидростатики (2.2):

,

,

Из уравнения (2.5) видно, что давление, на которое давление р 0 превышает атмосферное, уравновешивается давлением, создаваемым столбом жидкости (h п – h ) в пъезометре.

Давление, превышающее атмосферное, называют избыточным или манометрическим давлением. Избыточное (манометрическое) давление измеряется механическим прибором – манометром, и не учитывает атмосферное давление. Для случая, изображённого на рис. 2.4, б , манометрическое давление:

.

Давление р 0 из уравнения (2.5) будет равно:

Давление, определяемое с учётом атмосферного, называют абсолютным давлением.

Откачаем некоторое количество воздуха из закрытого резервуара (рис. 2.4. в ), в результате чего уровень жидкости в пъезометре будет ниже уровня жидкости в резервуаре. Составим основное уравнение гидростатики аналогично предыдущему случаю. С учётом того, что р 0 < р ат, получим:

Из уравнения (2.6) видно, что недостаток давления до атмосферного уравновешивается весом столба жидкости (h h п) в резервуаре.

Давление, характеризующее недостаток давления до атмосферного, называется вакуумметрическим давлением .

Взаимосвязь между манометрическим, вакуумметрическим и абсолютным давлением изображена на рис. 2.5.

Рис. 2.5. Взаимосвязь между манометрическим, вакуумметрическим



и абсолютным давлением

Существуют две системы отсчёта давления:

Если за начало отсчёта принимается атмосферное давление, то в этом случае давление может быть как положительным (избыточным), так и отрицательным (вакуумметрическим). Весовое давление столба жидкости p = ρ gh является избыточным;

Если за начало отсчёта принимается абсолютный ноль давлений, то в этом случае давление называют абсолютным, и оно может быть только положительным.

Высота столба жидкости в пъезометре h п называется пъезометрической высотой , с помощью которой определяют избыточное давление в точке подключения пъезометра:

В гидравлике удельную энергию жидкости называют напором . Так как напор измеряют в метрах, его называют высотой – геометрическая высота, пъезометрическая высота. В случае действия вакуумметрического давления разницу между уровнем свободной поверхности жидкости и уровнем жидкости в пъезометре называют вакуумметрической высотой.

Вопрос 21. Классификация приборов измерения давления. Устройство электроконтактного манометра, способы его поверки.

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Определение величины давления

Давление – это величина, характеризующая действие силы на единицу поверхности.

При определении величины давления принято различать давление абсолютное, атмосферное, избыточное и вакуумметрическое.

Абсолютное давление (р а ) – это давление внутри какой-либо системы, под которым находится газ, пар или жидкость, отсчитываемое от абсолютного нуля.

Атмосферное давление (р в ) создается массой воздушного столба земной атмосферы. Оно имеет переменную величину, зависящую от высоты местности над уровнем моря, географической широты и метеорологических условий.

Избыточное давление определяется разностью между абсолютным давлением (р а) и атмосферным давлением (р в):

р изб = р а – р в.

Вакуум (разрежение) – это такое состояние газа, при котором его давление меньше атмосферного. Количественно вакуумметрическое давление определяется разностью между атмосферным давлением и абсолютным давлением внутри вакуумной системы:

р вак = р в – р а

При измерении давления в движущихся средах под понятием давления понимают статическое и динамическое давление.

Статическое давление (р ст ) – это давление, зависящее от запаса потенциальной энергии газовой или жидкостной среды; определяется статическим напором. Оно может быть избыточным или вакуумметрическим, в частном случае может быть равно атмосферному.

Динамическое давление (р д ) – это давление, обусловленное скоростью движения потока газа или жидкости.

Полное давление (р п ) движущейся среды слагается из статического (р ст) и динамического (р д) давлений:

р п = р ст + р д.

Единицы измерения давления

В системе единиц СИ за единицу давления принято считать действие силы в 1 H (ньютон) на площадь 1 м², т. е. 1 Па (Паскаль). Так как эта единица очень мала, для практических измерений применяют килопаскаль (кПа = 10 3 Па) или мегапаскаль (МПа=10 6 Па).

Кроме того, на практике применяют такие единицы давления:

    миллиметр водяного столба (мм вод. ст.);

    миллиметр ртутного столба (мм рт. ст.);

    атмосфера;

    килограмм силы на квадратный сантиметр (кг·с/см²);

При этом соотношение между этими величинами следующее:

1 Па = 1 Н/ м²

1 кг·с/см² = 0,0981 МПа = 1 атм

1 мм вод. ст. = 9,81 Па = 10 -4 кг·с/см² = 10 -4 атм

1 мм рт. ст. = 133,332 Па

1 бар = 100 000 Па = 750 мм рт. ст.

Физическое объяснение некоторых единиц измерения:

    1 кг·с/см² – это давление столба воды высотой 10м;

    1 мм рт. ст. – это величина уменьшения давления при подъеме на каждые 10м высоты.

Методы измерения давления

Широкое использование давления, его перепада и разрежения в технологических процессах вызывает необходимость применять разнообразные методы и средства измерения и контроля давления.

Методы измерения давления основаны на сравнении сил измеряемого давления с силами:

    давления столба жидкости (ртути, воды) соответствующей высоты;

    развиваемыми при деформации упругих элементов (пружин, мембран, манометрических коробок, сильфонов и манометрических трубок);

    тяжести грузов;

    упругими силами, возникающими при деформации некоторых материалов и вызывающими электрические эффекты.

Классификация приборов измерения давления

Классификация по принципу действия

В соответствии с указанными методами, приборы измерения давления можно разделить, по принципу действия на:

    жидкостные;

    деформационные;

    грузопоршневые;

    электрические.

Наибольшее распространение в промышленности получили деформационные средства измерения. Остальные, в большинстве своем, нашли применение в лабораторных условиях в качестве образцовых или исследовательских.

Классификация в зависимости от измеряемой величины

В зависимости от измеряемой величины средства измерения давления подразделяются на:

    манометры – для измерения избыточного давления (давления выше атмосферного);

    микроманометры (напоромеры) – для измерения малых избыточных давлений (до 40 кПа);

    барометры – для измерения атмосферного давления;

    микровакуумметры (тягомеры) – для измерения малых разряжений (до -40 кПа);

    вакуумметры – для измерения вакуумметрического давления;

    мановакуумметры – для измерения избыточного и вакуумметрического давления;

    напоротягомеры – для измерения избыточного (до 40 кПа) и вакуумметрического давления (до -40 кПа);

    манометры абсолютного давления – для измерения давления, отсчитываемого от абсолютного нуля;

    дифференциальные манометры – для измерения разности (перепада) давлений.

Жидкостные средства измерения давления

Действие жидкостных средств измерений основано на гидростатическом принципе, при котором измеряемое давление уравновешивается давлением столба затворной (рабочей) жидкости. Разница уровней в зависимости от плотности жидкости является мерой давления.

U -образный манометр – это простейший прибор для измерения давления или разности давлений. Представляет собой согнутую стеклянную трубку, заполненную рабочей жидкостью (ртутью или водой) и прикрепленную к панели со шкалой. Один конец трубки соединяется с атмосферой, а другой подключается к объекту, где измеряется давление.

Верхний предел измерения двухтрубных манометров составляет 1…10кПа при приведенной погрешности измерения 0,2…2%. Точность измерения давления этим средством будет определяться точностью отсчета величины h(величины разности уровня жидкости), точностью определения плотности рабочей жидкости ρ и не зависеть от сечения трубки.

Жидкостные средства измерения давления характерны отсутствием дистанционной передачи показаний, небольшими пределами измерений и низкой прочностью. В то же время благодаря своей простоте, дешевизне и относительно высокой точности измерений они широко распространены в лабораториях и реже в промышленности.

Деформационные средства измерения давления

Основаны на уравновешивании силы, создаваемой давлением или вакуумом контролируемой среды на чувствительный элемент, силами упругих деформаций различного рода упругих элементов. Эта деформация в виде линейных или угловых перемещений передается регистрирующему устройству (показывающему или самопишущему) или преобразуется в электрический (пневматический) сигнал для дистанционной передачи.

В качестве чувствительных элементов используют одновитковые трубчатые пружины, многовитковые трубчатые пружины, упругие мембраны, сильфонные и пружинно-сильфонные.

Для изготовления мембран, сильфонов и трубчатых пружин применяются бронза, латунь, хромоникелевые сплавы, отличающиеся достаточно высокой упругостью, антикоррозийностью, малой зависимостью параметров от изменения температуры.

Мембранные приборы применяются для измерения небольших давлений (до 40кПа) нейтральных газовых средств.

Сильфонные приборы предназначены для измерения избыточного и вакуумметрического давления неагрессивных газов с пределами измерений до 40кПа, до 400кПа (как манометры), до 100кПа (как вакуумметры), в интервале -100…+300кПа (как мановакуумметрические).

Трубчато-пружинные приборы принадлежат к числу наиболее распространенных манометров, вакуумметров и мановакуумметров.

Трубчатая пружина представляет собой тонкостенную, согнутую по дуге окружности, трубку (одно- или многовитковую) с запаенным одним концом, которая изготавливается из медных сплавов или нержавеющей стали. При увеличении или уменьшении давления внутри трубки пружина раскручивается или скручивается на определенный угол.

Манометры рассмотренного типа выпускаются для верхних пределов измерения 60…160кПа. Вакуумметры выпускаются со шкалой 0…100кПа. Мановакуумметры имеют пределы измерений: от -100кПа до +(60кПа…2,4МПа). Класс точности для рабочих манометров 0,6…4, для образцовых – 0,16; 0,25; 0,4.

Грузопоршневые манометры применяются как устройства для поверки механических контрольных и образцовых манометров среднего и высокого давления. Давление в них определяется по калиброванным грузам, помещаемым на поршне. В качестве рабочей жидкости применяют керосин, трансформаторное или касторовое масло. Класс точности грузопоршневых манометров 0,05 и 0,02%.

Электрические манометры и вакуумметры

Действие приборов этой группы основано на свойстве некоторых материалов изменять свои электрические параметры под действием давления.

Пьезоэлектрические манометры применяют при измерении пульсирующего с высоко частотой давления в механизмах с допустимой нагрузкой на чувствительный элемент до 8·10 3 ГПа. Чувствительным элементом в пьезоэлектрических манометрах, преобразующим механические напряжения в колебания электрического тока, являются пластины цилиндрической или прямоугольной формы толщиной в несколько миллиметров из кварца, титаната бария или керамики типа ЦТС (цирконат-титонат свинца).

Тензометрические манометры имеют малые габаритные размеры, простое устройство, высокую точность и надежность в работе. Верхний предел показаний 0,1…40Мпа, класс точности 0,6; 1 и 1,5. Применяются в сложных производственных условиях.

В качестве чувствительного элемента в тензометрических манометрах применяются тензорезисторы, принцип действия которых основан на изменении сопротивления под действием деформации.

Давление в манометре измеряется схемой неуравновешенного моста.

В результате деформации мембраны с сапфировой пластинкой и тензорезисторами возникает разбаланс моста в виде напряжения, которое с помощью усилителя преобразуется в выходной сигнал, пропорциональный измеряемому давлению.

Дифференциальные манометры

Применяются для измерения разности (перепада) давления жидкостей и газов. Они могут быть использованы для измерения расхода газов и жидкостей, уровня жидкости, а также для измерения малых избыточных и вакуумметрических давлений.

Мембранные дифференциальные манометры являются бесшакальными первичными измерительными приборами, предназначенными для измерения давления неагрессивных сред, преобразующими измеряемую величину в унифицированный аналоговый сигнал постоянного тока 0…5мА.

Дифференциальные манометры типа ДМ выпускаются на предельные перепады давления 1,6…630кПа.

Сильфонные дифференциальные манометры выпускаются на предельные перепады давления 1…4кПа, они рассчитаны на предельно допустимое рабочее избыточное давление 25кПа.

Устройство электроконтактного манометра, способы его поверки

Устройство электроконтактного манометра

Рисунок - Принципиальные электрические схемы электроконтактных манометров: а – одноконтактная на замыкание; б – одноконтактная на размыкание; в – двухконтактная на размыкание–размыкание; г – двухконтактная на замыкание–замыкание; д – двухконтактная на размыкание–замыкание; е – двухконтактная на замыкание–размыкание; 1 – указательная стрелка; 2 и 3 – электрические базовые контакты; 4 и 5 – зоны замкнутых и разомкнутых контактов соответственно; 6 и 7 – объекты воздействия

Типовая схема функционирования электроконтактного манометра может быть проиллюстрирована рисунке (а) . При росте давления и достижении им определенного значения указательная стрелка 1 с электрическим контактом входит в зону 4 и замыкает с помощью базового контакта 2 электрическую цепь прибора. Замыкание цепи в свою очередь приводит к вводу в работу объекта воздействия 6.

В схеме размыкания (рис. б ) при отсутствии давления электрические контакты указательной стрелки 1 и базового контакта 2 замкнуты. Под напряжением U в находится электрическая цепь прибора и объект воздействия. При повышении давления и прохождении стрелкой зоны замкнутых контактов происходит разрыв электрической цепи прибора и соответственно прерывается электрический сигнал, направляемый на объект воздействия.

Наиболее часто в производственных условиях применяются манометры с двухконтактными электрическими схемами: одна используется для звуковой или световой индикации, а вторая – для организации функционирования систем различных типов управления. Так, схема размыкание–замыкание (рис. д ) позволяет по одному каналу при достижении определенного давления разомкнуть одну электрическую цепь и получить сигнал воздействия на объект 7 , а по второму – с помощью базового контакта 3 замкнуть находящуюся в разомкнутом состоянии вторую электрическую цепь.

Схема замыкание–размыкание (рис. е ) позволяет при увеличении давления одну цепь замкнуть, а вторую – разомкнуть.

Двухконтактные схемы на замыкание–замыкание (рис. г ) и размыкание–размыкание (рис. в ) обеспечивают при повышении давления и достижении одних и тех же или различных его значений замыкание обеих электрических цепей или соответственно их размыкание.

Электроконтактная часть манометра может быть как неотъемлемой, совмещенной непосредственно с механизмом измерителя, так и присоединяемой в виде электроконтактной группы, устанавливаемой на передней части прибора. Производители традиционно используют конструкции, в которых тяги электроконтактной группы монтировались на оси трубки. В некоторых устройствах, как правило, устанавливается электроконтактная группа, соединенная с чувствительным элементом через указательную стрелку манометра. Некоторые производители освоили электроконтактный манометр с микровыключателями, которые устанавливаются на передаточном механизме измерителя.

Электроконтактные манометры производятся с механическими контактами, контактами с магнитным поджатием, индуктивной парой, микровыключателями.

Электроконтактная группа с механическими контактами конструктивно наиболее проста. На диэлектрическом основании фиксируется базовый контакт, представляющий собой дополнительную стрелку с закрепленным на нем электрическим контактом и соединенным с электрической цепью. Другой разъем электрической цепи связан с контактом, который передвигается указательной стрелкой. Таким образом, при росте давления указательная стрелка смещает подвижный контакт до момента его соединения со вторым контактом, закрепленным на дополнительной стрелке. Механические контакты, изготовленные в виде лепестков или стоек, производятся из сплавов серебро–никель (Ar80Ni20), серебро–палладий (Ag70Pd30), золото–серебро (Au80Ag20), платина–иридий (Pt75Ir25) и др.

Приборы с механическими контактами рассчитаны на напряжение до 250 В и выдерживают максимальную разрывную мощность до 10 Вт постоянного или до 20 В×А переменного тока. Малые разрывные мощности контактов обеспечивают достаточно высокую точность срабатывания (до 0,5 % полного значения шкалы).

Более прочное электрическое соединение обеспечивают контакты с магнитным поджатием. Их отличие от механических состоит в закреплении на обратной стороне контактов (клеем или винтами) малых магнитов, что усиливает прочность механического соединения. Максимальная разрывная мощность контактов с магнитным поджатием составляет до 30 Вт постоянного или до 50 В×А переменного тока и напряжением до 380 В. Из-за наличия магнитов в системе контактов класс точности не превышает 2,5.

Способы поверки ЭКГ

Электроконтактные манометры, а также датчики давления должны периодически подвергаться поверке.

Электроконтактные манометры в полевых и лабораторных условиях могут проверяться тремя способами:

    поверка нулевой точки: при снятии давления, стрелка должна возвращаться к «0» отметке, недоход стрелки не должен превышать половины допуска погрешности прибора;

    поверка рабочей точки: к проверяемому прибору подсоединяется контрольный манометр и производится сравнение показаний обоих приборов;

    поверка (калибровка): поверка прибора согласно методики на поверку (калибровку) для данного типа приборов.

Электроконтактные манометры и реле давления проверяются на точность срабатывания сигнальных контактов, погрешность срабатывания должна быть не выше паспортной.

Порядок выполнения поверки

    Выполнить ТО прибора давления:

Проверить маркировку и сохранность пломб;

Наличие и прочность крепления крышки;

Отсутствие обрыва заземляющего провода;

Отсутствие вмятин и видимых повреждений, пыли и грязи на корпусе;

Прочность крепления датчика (работы на месте эксплуатации);

Целостность изоляции кабеля (работы на месте эксплуатации);

Надежность крепления кабеля в водном устройстве (работы на месте эксплуатации);

Проверить затяжку крепежных элементов (работы на месте эксплуатации);

    Для контактных приборов проверить сопротивление изоляции относительно корпуса.

    Собрать схему для контактных приборов давления.

    Плавно повышая давление на входе, снять показания образцового прибора при прямом и обратном (снижении давления) ходе. Отчеты выполнить в 5 равнорасположенных точках диапазона измерений.

Проверить точность срабатывания контактов согласно уставок.