Соединения кремния с металлами. Кремний (химический элемент): свойства, характеристика, формула

Кремний (Si) - это неметалл, стоящий на 2 месте после кислорода по запасам и нахождению на Земле(25,8% в Земной коре). В чистом виде он практически не встречается, в основном присутствует на планете в виде соединений.

Характеристика кремния

Физические свойства

Кремний - это хрупкий светло-серый материал с металлическим оттенком или порошкообразный материал коричневого цвета. Строение кристалла кремния однотипно с алмазом, но из-за различий в длине связи между атомами твердость алмаза значительно выше.

Кремний - неметалл, доступный для электромагнитного излучения. Благодаря некоторым качествам, он находится в середине между неметаллами и металлами:

При увеличении температуры до 800 °C становится гибким и пластичным;

При нагревании до 1417 °С плавится;

Начинает кипеть при температуре свыше 2600 °С;

Меняет плотность при высоком давлении;

Обладает свойством намагничиваться против направления внешнего магнитного поля (диамагнит).

Кремний - полупроводник, и примеси, входящие в его сплавы определяют электрические характеристики будущих соединений.

Химические свойства

При разогревании Si вступает в реакцию с кислородом, бромом, йодом, азотом, хлором и различными металлами. При соединении с углеродом получаются твердые сплавы с термо - и химио - стойкостью.

Кремний никак не воздействует с водородом, поэтому все возможные смеси c ним получают другим путем.

При обычных условиях он слабо реагирует со всеми веществами, кроме газообразного фтора. С ним образуется тетрафторид кремния SiF4. Такая неактивность объясняется тем, что на поверхности неметалла из-за реакции с кислородом, водой, ее парами и воздухом ложится пленка диоксида кремния и окутывает его. Поэтому химическое воздействие замедленно и незначительно.

Для удаления этого слоя используют смесь фтороводородной и азотной кислот или водные растворы щелочей. Некоторые специальные жидкости для этого предусматривают добавление хромового ангидрида и иных веществ.

Нахождение кремния в природе

Кремний для Земли столь же важен как углерод для растений и животных. Ее кора почти наполовину состоит из кислорода, а если добавить к этому кремний, получится 80% массы. Эта связь очень важна для перемещения химических элементов.

75% литосферы содержат различные соли кремневых кислот и минералов (песок, кварциты, кремень, слюды, полевые шпаты и т. д.). Во время образования магмы и разных магматических пород Si накапливается в гранитах и в ультраосновных породах (плутонических и вулканических).

В теле человека 1 г кремния. Большинство содержится в костях, сухожилиях, кожном и волосяном покрове, лимфоузлах, аорте и трахее. Он участвует в процессе роста соединительной и костной тканей, а так же поддерживает эластичность сосудов.

Норма употребления в день для взрослого - 5 - 20 мг. Избыток вызывает силикоз.

Применение кремния в промышленности

С каменного века этот неметалл известен человеку и широко используется до сих пор.

Применение:

Он хороший восстановитель, поэтому его используют в металлургии для получения металлов.

В определенных условиях кремний способен проводить электричество, поэтому его применяют в электронике.

Оксид кремния используется в изготовлении стекол и силикатных материалов.

Специальные сплавы используется для производства полупроводниковых приборов.

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния - оксид SiO 2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF 4 , восстанавливая последний металлическим калием. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название ввел Г. И. Гесс в 1834.

Распространение Кремния в природе. По распространенности в земной коре Кремний - второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO 2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

При магматических процессах происходит слабая дифференциация Кремния: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температуpax и большом давлении растворимость SiO 2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и других жилы).

Физические свойства Кремния. Кремний образует темно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решетку типа алмаза с периодом а = 5.431Å, плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . Кремний плавится при 1417 °С, кипит при 2600 °С. Удельная теплоемкость (при 20-100 °С) 800 Дж/(кг·К), или 0,191 кал/(г·град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25 °С) 84-126 вт/(м·К), или 0,20-0,30 кал/(см·сек·град). Температурный коэффициент линейного расширения 2,33·10 -6 К -1 , ниже 120 К становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ = 6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13-10 -6 . Твердость Кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2), модуль упругости 109 Гн/м 2 (10 890 кгс/мм 2), коэффициент сжимаемости 0,325·10 -6 см 2 /кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний - полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Собственное удельное объемное электросопротивление Кремния при комнатной температуре принимается равным 2,3·10 3 ом·м (2,3·10 5 ом·см).

Полупроводниковый Кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

Химические свойства Кремния. В соответствии с положением Кремния в периодической системе Менделеева 14 электронов атома Кремния распределены по трем оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 . Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,ЗЗÅ, ковалентный радиус 1,17Å, ионные радиусы Si 4+ 0,39Å, Si 4- 1,98Å.

В соединениях Кремний (аналогично углероду) 4-валентен. Однако, в отличие от углерода, Кремний наряду с координационным числом 4 проявляет координационное число 6, что объясняется большим объемом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома Кремния с другими атомами осуществляется обычно за счет гибридных sр 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда Кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), Кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si - О, равная 464 кДж/молъ (111 ккал/молъ), обусловливает стойкость его кислородных соединений (SiO 2 и силикатов). Энергия связи Si - Si мала, 176 кДж/молъ (42 ккал/моль); в отличие от углерода, для Кремния не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе Кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO 2 . Известен также оксид кремния (II) SiO, устойчивый при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твердый продукт, легко разлагающийся на тонкую смесь Si и SiO 2 . Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX 4 . Водород непосредственно не реагирует с Кремнием, и кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH 4 до Si 8 H 18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si 3 N 4 , не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и других. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB 3 , SiB 6 , SiB 12). При нагревании Кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с СН 3 Сl) с образованием органогалосиланов [например, Si(СН 3) 3 Cl], служащих для синтеза многочисленных кремнийорганических соединений.

Кремний образует соединения почти со всеми металлами - силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi 2 , Me 5 Si 3 , Me 3 Si, Me 2 Si и других) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твердостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi 2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение Кремния. Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO 2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого Кремния Это требует предварительного синтеза чистейших исходных соединений Кремния, из которых Кремний извлекают путем восстановления или термического разложения.

Чистый полупроводниковый Кремний получают в двух видах: поликристаллический (восстановлением SiCl 4 или SiHCl 3 цинком или водородом, термическим разложением SiI 4 и SiH 4) и монокристаллический (бестигельной зонной плавкой и "вытягиванием" монокристалла из расплавленного Кремния - метод Чохральского).

Применение Кремния. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике,

Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и других отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз..

Кремний в организме. Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много Кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные Кремнием, в тропич. морях - известковые илы с низким содержанием Кремния. Среди наземных растений много Кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах Кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г Кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание - силикоз.

Описание и свойства кремния

Кремний – элемент , чётвёртая группа, третий период в таблице элементов. Атомный номер 14. Формула кремния — 3s2 3p2. Определён как элемент, в 1811 г, а в 1834 г получил русское название «кремний», взамен прежнего «сицилий». Плавится при 1414º С, закипает при 2349º С.

Молекулярным строением он напоминает , но уступает ему по твёрдости. Довольно хрупок, в нагретом состоянии (не менее 800º С) приобретает пластичность. Просвечивается инфракрасным излучением. Монокристаллический тип кремния обладает полупроводниковыми свойствами. По некоторым характеристикам атом кремния схож с атомарным строением углерода. Электроны кремния имеют такое же валентное число, как и при углеродном строении.

Рабочие свойства кремния зависят от содержания в нём определённых содержаний. У кремния допустим различный тип проводимости. В частности это «дырочный» и «электронный» тип. Для получения первого в кремний добавляется бор. Если добавить фосфор, кремний приобретает второй тип проводимости. Если кремний нагревать вместе с другими металлами, образовываются специфические соединения, называемые «силицидами», например, при реакции «магний-кремний «.

Кремний, идущий на нужды электроники, в первую очередь оценивается по характеристикам его верхних слоёв. Поэтому необходимо обращать внимание именно на их качество, оно непосредственно отражается на общих показателях. От них зависит работа произведённого прибора. Для получения наиболее приемлемых показателей верхних слоёв кремния, их обрабатывают различными химическими способами или подвергают облучению.

Соединение «сера-кремний», образует сульфид кремния, легко взаимодействующий с водой и кислородом. При реакции с кислородом, в температурных условиях выше 400º С, получается диоксид кремния. При этой же температуре становятся возможными реакции с хлором и йодом, а также с бромом, во время этого образуются летучие вещества – тетрагалогениды.

Соединить кремний и водород, путём прямого контакта, не получится, для этого существуют методы косвенного характера. При 1000º С возможна реакция с азотом, а также бором, при этом получается нитрид и борид кремния. При этой же температуре, соединив кремний с углеродом, можно произвести карбид кремния , так называемый «карборунд». Данный состав обладает твёрдой структурой, химическая активность вялая. Используется как абразив.

В соединении с железом, кремний образует особую смесь, это допускает плавление этих элементов, при котором образуется ферросилициевая керамика. Причём температура её плавления гораздо ниже, чем если их плавить по отдельности. При температурном режиме выше 1200º С, из элемента начинается образование оксида кремния , также при определённых условиях получается гидроксид кремния . При травлении кремния применяются щелочные растворы на водной основе. Их температура должна быть не менее 60º С.

Месторождения и добыча кремния

Элемент – второе по распространению на планете вещество. Кремний составляет почти треть объёма земной коры. Более распространенным является только кислород. Преимущественно выражен кремнезёмом – соединением в своей основе содержащим диоксид кремния. Главные производные диоксида кремния – кремень, различные пески, кварц, а также полевые . После них идут силикатные соединения кремния. Самородность для кремния – редкое явление.

Применение кремния

Кремний, химические свойства которого определяют область его применения, делится на несколько видов. Менее чистый кремний идёт на металлургические нужды: на , например для добавки в алюминий, кремний активно меняет его свойства, раскислители, и т.д. Он активно модифицирует свойства металлов, посредством добавки в их состав. Кремний легирует их, изменяя рабочие характеристики, кремния достаточно при этом совсем небольшого количества.

Также из неочищенного кремния производят более качественные производные, в частности, моно и поликристаллический кремний, а также кремниевые органики – это силиконы и различные органические масла. Также он нашёл своё применение при производстве цемента и стекольной промышленности. Не обошёл он и кирпичное производство, фабрики производящие фарфор и также без него не обходятся.

Кремний входит в состав всем известного силикатного клея, который идёт на ремонтные работы, а раньше он использовался в канцелярских нуждах, пока не появились более практичные заменители. В состав некоторых пиротехнических изделий также входи кремний. Из него и его железных сплавов можно получать водород на открытом воздухе.

На что идёт более качественный кремний? Пластины солнечных батарей тоже включают в состав кремний, естественно не технический. Для этих нужд необходим кремний идеальной чистоты или хотя бы технический кремний высшей степени очистки.

Так называемый «электронный кремний», который содержит кремний почти на 100%, обладает гораздо лучшими показателями. Поэтому его предпочитают при производстве сверхточных электронных приборов и сложных микросхем. При их изготовлении требуется качественная производственная схема, кремний для которой должен идти только высшей категории. Работа этих устройств зависит от того, сколько содержит кремний нежелательных примесей.

Кремний занимает важное место в природе, и большинство живых существ, постоянно испытывают в нём потребность. Для них это своеобразный строительный состав, потому — что он крайне важен для здоровья опорно-двигательного аппарата. Ежедневно человек поглощает до 1 г соединений кремния .

Может ли кремний быть вредным?

Да, по той причине что, диоксид кремния крайне расположен к пылеобразованию. Она имеет раздражающее воздействие на слизистые поверхности организма и способна активно накапливаться в лёгких, вызывая силикоз. Для этого на производстве связанного с переработкой кремниевых элементов, обязательно применение респираторов. Особенно важно их наличие, если речь идёт о моноксиде кремния.

Цена кремния

Как известно вся современная электронная техника, начиная от телекоммуникаций и заканчивая компьютерными технологиями, основывается на применении кремния, используя его полупроводниковые свойства. Его другие аналоги применяются в гораздо меньшей степени. Уникальные свойства кремния и его производных пока вне конкуренции, на долгие года вперёд. Несмотря на спад цен в 2001 г на кремний, продажи быстро пришли в норму. И уже в 2003 г товарооборот составил 24 тысячи тонн за год.

Для новейших технологий, требующих почти кристальной чистоты кремния, его технические аналоги не подходят. А за счёт его сложной системы очистки цена соответственно в разы возрастает. Более распространённым является поликристаллический тип кремния, несколько меньшим спросом пользуется его монокристаллический прототип. При этом доля использования кремния для полупроводников занимает львиную часть товарооборота.

Цены на продукцию варьируются в зависимости от чистоты и назначения кремния, купить который, можно начиная от 10 центов за кг неочищенного сырья и до 10$ и выше за «электронный» кремний.


Физические свойства
Кремний - элемент IV группы, атомный номер его 14, атомная масса 28,06. Число атомов в одном кубическом сантиметре 5*10в22.
Кристаллизуется кремний, подобно германию, в кубической решетке типа алмаза с постоянной а = 5,4198А, в узлах элементарной ячейки которой находится 8 атомов кремния с координационным числом 4. Минимальное расстояние между соседними атомами и постоянная решетки у кремния меньше, чем у германия. Поэтому и тетраэдрическая ковалентная связь в кремнии более прочна, чем обусловлена большая ширина запрещенной зоны кремния и более высокая его температура плавления, чем германия.
Кремний - темно-серое вещество с синеватым отливом. Вследствие высокой твердости, которая по Moocy равна 7, он очень хрупок; при ударе рассыпается, поэтому с трудом поддается обработке не только в холодном, но и в горячем состоянии.
Температура плавления кремния чистотой 99,9% Si определена равной 1413-1420° С. Кремний более высокой степени чистоты имеет температуру плавления 1480-1500° С.
Температура кипения кремния лежит в пределах 2400-2630° С. Плотность кремния при 25° С составляет 2,32-2,49 г/см3. При плавлении плотность кремния увеличивается, что объясняется перестройкой структуры ближнего порядка в направлении повышения координационного числа. Поэтому при охлаждении он увеличивается в объеме, а при плавлении - уменьшается. Уменьшение объема кремния при плавлении составляет 9-10%.
Теплопроводность кристаллического кремния при комнатной температуре равна 0,2-0,26кал/сек*см*град. Теплоемкость в пределах 20-100° C составляет 0,181 кал/г*град. Зависимость теплоемкости твердого кремния от 298° К до температуры плавления описывается уравнением

Ср = 5,70+1,02*10в-3Т-1,06*10в-5Т-2 кал/град*моль.


В жидком состоянии до температуры кипения величина теплоемкости составляет 7,4 кал/град*моль. Теплоемкость кремния чистотой >99,99% при температурах от 1200° С до температуры плавления равна 6,53 кал/град*моль, а от температуры плавления до 1500° С 6,12 кал/град*моль. Теплота плавления чистого кремния составляет 12095± 100 кал/г*атом.
Изменение упругости пара твердого кремния от 1200° К до температуры плавления выражается уравнением

Ig р мм рт. ст. = -18000/Т - 1,022 IgT + 12,83,


а для жидкого кремния

Ig р мм рт. ст. = -17100/Т - 1,022 Ig T + 12,31.


Упругость пара кремния при температуре плавления составляет ~10в-2 мм рт. ст.
Поверхностное натяжение расплавленного кремния, измеренное методом сидячей капли на подложках из ZrO2, TiO2 и MgO в атмосфере гелия при 1450° С, равно 730 дин/см.
Электрические свойства
Кремний по своим электрическим свойствам относится к типичным полупроводникам. С повышением температуры удельное электросопротивление кремния резко снижается. При плавлении он имеет электропроводность, свойственную жидким металлам.
При 300°К удельное электросопротивление кремния (р) зависит от содержания в нем примесей.
Кремний чистотой 98,5% имеет р = 0,8 ом*см, 99,97% -12,6 ом*см, спектрально-чистый кремний 30 ом*см. Наиболее чистые образцы кремния имеют р = 16 000 ом*см.
Ниже приведены некоторые теоретически рассчитанные электрические характеристики кремния, обладающего собственной проводимостью (при 300°С):

Наименьшая концентрация электрически активных примесей, достигнутая в настоящее время в результате глубокой очистки кремния, составляет 10в13 см-3.
Подвижность носителей тока в кремнии при высоких температурах определяется рассеянием на колебаниях решетки, а при низких - на ионах примеси.
Изменение подвижности электронов и дырок в кремнии в зависимости от температуры определяется следующими уравнениями:

μn = 1,2*10в8*Т-2 см2/в*сек;
μр = 2,9*10в9*T-2,7 см2/в*сек.


Заметное снижение подвижности электронов в кремнии при комнатной температуре наступает при концентрации носителей тока, отвечающей величине р = 1,0 ом*см, а подвижность дырок - при р = 10 ом*см.
Время жизни носителей заряда изменяется в кремнии в широких пределах: в среднем т = 200 мксек.
Для полупроводниковой техники большое значение имеют сплавы кремния с другими элементами, главным образом III и V групп. Эти элементы вводят в глубоко-очищенный кремний в небольших количествах для придания ему определенных электрических свойств.
Работа полупроводниковых приборов - диодов, триодов, фотоэлементов, термоэлементов основана на свойствах электронно-дырочных переходов, которые получают легированием кремния теми или иными элементами. Для создания в кремнии n-проводимости его легируют фосфором, мышьяком или сурьмой, а для получения р-проводимости чаще всего легируют бором. К числу наиболее важных донорных элементов принадлежат фосфор и мышьяк.
Кремний хорошо растворяется во многих расплавленных металлах, например в алюминии, олове, свинце, цинке. Растворимость металлов в твердом кремнии, как правило, очень мала.
В настоящее время известно более тридцати диаграмм состояния кремния с другими элементами. Co многими элементами кремний образует химические соединения, в частности с фосфором, мышьяком, бором, литием, марганцем, железом, кобальтом, никелем, кальцием, магнием, серой, селеном и др. С другими же элементами, например с алюминием, бериллием, оловом, галлием, индием, сурьмой и др. образует системы эвтектического типа.
Химические свойства
Кремний устойчив против окисления на воздухе до 900° С, однако при этой температуре водяной пар окисляет кремний, а при более высокой температуре водяной пар полностью разлагается кремнием.
При 1000° C и выше кремний сильно окисляется кислородом воздуха с образованием кремниевого ангидрида или кремнезема SiO2. С водородом кремний реагирует только при температуре дуги, образуя кремнийводородные соединения.
В присутствии азота при 1300° С кремний образует нитрид Si3N4. Это - белый тугоплавкий порошок, возгоняющийся около 2000° С.
С галоидами кремний легко взаимодействует, например с фтором - при комнатной температуре, с хлором - при 200-300° С, с бромом - при 450-500° С, а с йодом - при более высоких температурах, 700-750° С.
С фосфором, мышьяком и сурьмой кремний не реагирует вплоть до температуры их кипения; с углеродом и бором он вступает в соединение лишь при очень высоких температурах (-2000°С).
Кремний характеризуется стойкостью ко всем кислотам любой концентрации, в том числе к серной, соляной, азотной и плавиковой. Растворяется кремний только в смеси плавиковой и азотной кислот (HF+HNO3). Meнее интенсивно кремний растворяется в азотной кислоте, содержащей добавки перекиси водорода и брома.
В противоположность кислотам щелочные растворы хорошо растворяют кремний; при этом выделяется кислород и образуются соли кремниевой кислоты, например

Si + 2KOH + H2O = K2SiO3 + 2H2.


В присутствии перекиси водорода растворение кремния в щелочах ускоряется.
Для травления кремния применяют щелочные и кислые травители. Щелочные травители действуют сильнее, поэтому их применяют для удаления поверхностных загрязнений, слоев с нарушенной структурой в результате механической обработки и для выявления макродефектов. С этой целью кремний травят в кипящем водном растворе KOH или NaOH.
Для выявления дислокаций на монокристаллах кремния применяют кислые травители, например СР-4 с добавкой азотнокислой ртути.
Кремний образует химические соединения с валентностями 2 и 4. Соединения двухвалентного кремния мало устойчивы. С кислородом кремний образует два соединения: SiO - моноокись и SiO2 - двуокись кремния.
Моноокись кремния SiO в природе не встречается, но она легко образуется при восстановлении SiO2 углеродом при 1500° С:

SiO2 + C → SiO + CO,


или же при взаимодействии кремния с кварцем при 1350° С:

Si + SiO2 ⇔ 2SiO.


При высокой температуре равновесие этой реакции смещается вправо, так как моноокись кремния получается в газообразном состоянии. При нагревании до 1700° С моноокись кремния полностью возгоняется, а при более высоких температурах диспропорционирует на Si и SiO2.
Моноокись кремния SiO - порошок темно-желтого цвета с плотностью 2,13; ток не проводит даже при высоких температурах, поэтому применяется как изоляционный материал.
Очень важным химическим соединением кремния является его двуокись (кварц). Это соединение очень устойчиво, образование его сопровождается большим выделением тепла:

Si + O2 = SiO2 + 203 ккал.


Кварц - бесцветное вещество с температурой плавления ~1713°С и температурой кипения 2590° С.
При охлаждении расплавленного кварца образуется прозрачное кварцевое стекло, которое служит одним из важнейших материалов для изготовления аппаратуры, применяемой в технологии производства кремния и других полупроводниковых материалов.
При нагревании SiO2 с углем при 2000-2200° С образуется карбид кремния SiC, обладающий полупроводниковыми свойствами.
Кремний образует довольно прочные соединения с галоидами, физико-химические свойства этих соединений приведены в табл. 57.

Галоидные соединения кремния SiF4, SiCl4, SiBr4 и SiI3 могут быть получены простым синтезом из элементов или при взаимодействии SiO2 с галоидом в присутствии углерода:

Si + 2Cl2 → SiCl4,
SiO2 + 2Cl2 + C → SiCl4 + CO2,
Si + 2I2 → SiI4,
SiO2 + 2Br2 + C → SiBr4 + CO2.


Галоидно-силановые соединения кремния образуются в реакциях гидрохлорирования или гидробромирования кремния:

Si + 3HCl → SiHCl3 + H2,
Si + 3HBr → SiHBr3 + H2,


которые протекают при сравнительно низких температурах, около 300° С.
Тетрахлорид кремния SiCl4 представляет собой бесцветную прозрачную жидкость, сильно дымящую на воздухе вследствие гидролиза и образования хлороводорода. Водой разлагается с образованием силикагеля:

SiCli + 4H2O → 4HCl + Si(OH)4.


Тетрайодид кремния SiI4 - бесцветное кристаллическое вещество. При нагревании на воздухе пары тетрайодида легко воспламеняются.
Трихлорсилан SiHCl3 - это горючая жидкость с очень высокой упругостью пара при комнатной температуре. Поэтому трихлорсилан обычно хранят в герметичных стальных емкостях, способных выдерживать высокое давление.
Кремний может замещать углерод в органических соединениях, образуя при этом кремнийводородные соединения - силаны. По своим свойствам силаны аналогичны углеводородам. Некоторые свойства силанов приведены в табл. 58.

Соединения этого типа в лабораторных условиях могут быть получены, например, растворением силицида магния в крепкой соляной кислоте:

Mg2Si + 4HCl → 2MgCl2 + SiH4.


Эта реакция протекает сложно. Наряду с моносила-ном могут образовываться различные полисиланы и выделяться водород.
Все силаны легко окисляются на воздухе. Реакционная способность их возрастает с увеличением молекулярной массы. Весьма опасно попадание в сосуды с силаном воздуха.
Моносилан SiH4 - это бесцветный газ, достаточно устойчивый при отсутствии воздуха и влаги. С воздухом моносилан образует взрывчатую смесь; может окисляться со вспышкой даже при -180° С.
Моносилан характеризуется большей термической стойкостью по сравнению с полисиланами. При нагревании выше 400° С моносилан разлагается на элементы, выделяя аморфный кремний:

SiH4 → Si + 2H2.


Эта реакция используется при получении кремния си-лановым методом. Силаны быстро и полно разлагаются водой с образованием SiO2:

SiH4 + 2H2O = SiO2 + 4H2,
Si3H8 + 6H2O = 3SiO2 + 10H2.


Также быстро и до конца разлагаются силаны водными растворами щелочей:

SiH4 + 2NaOH + H2O = Na2SiO3 + 4H2.


Устойчивость силанов резко увеличивается при введении в их молекулы галоидов, замещающих атомы водорода. В ряду замещенных силанов наибольший интерес представляет трихлорсилан SiHCl3, при восстановлении которого получают чистый кремний.
Применение кремния
Кремний как полупроводник известен раньше германия. Однако трудность получения кремния в чистейшем виде задерживала использование его в технике.
В последнее время разработаны и освоены эффективные методы очистки кремния до высокой степени чистоты, поэтому кремний находит все более широкое применение в полупроводниковых приборах. Так, из кремния изготавливают выпрямители тока (диоды), усилители радиоволн (триоды). В этом случае для мощных усилителей изготавливают кремниевые электроды с большими поверхностями, разделяющими электронную и дырочную части полупроводника.
Кремний служит хорошим материалом и для фотоэлектрических преобразователей. Поэтому для создания солнечных батарей применяют кремниевые фотоэлементы, предназначенные для непосредственного превращения солнечной энергии в электрическую. Кремниевые фотопреобразователи лучше других подходят по своей спектральной чувствительности для использования солнечного света.
Кремний обладает рядом преимуществ перед германием: имеет большую величину запрещенной зоны, которая обеспечивает наибольшую выходную электрическую мощность; кремниевые приборы могут работать при более высоких температурах (если рабочая температура германиевых приборов не превышает 60-80° С, то кремниевые диоды могут работать при 200° С).
Соединения кремния также находят применение в приборах. Например, карбид кремния применяется для изготовления туннельных диодов (нелинейные сопротивления) и др.
Имя:*
E-Mail:
Комментарий:

Добавить

15.03.2019

Специалисты фирмы Emirates Global Aluminum сделали заявление по поводу того, что их филиал Guinea Alumina Corp надеется в скором времени привлечь от семисот до семисот...

15.03.2019

Демонтаж козлового крана предусматривает разбор металлических конструкций, а также подкрановых путей, удаление оснащения, а также отсоединение разнообразных устройств. В...

14.03.2019

С годами в частных домах и квартирах скапливается металлический лом. Может быть представлен старыми бытовыми устройствами, отходами строительной деятельности и многим...

14.03.2019

Осень – пора, когда можно отдохнуть от надоевшей жары, уехав на пару дней на дачу, где можно не только насладиться дарами природы, но и поностальгировать. Однако чтобы...

Характеристика элемента

14 Si 1s 2 2s 2 2p 6 3s 2 3p 2



Изотопы: 28 Si (92.27 %); 29 Si (4.68 %); 30 Si (3,05 %)



Кремний - второй после кислорода по распространенности в земной коре элемент (27,6 % по массе). В свободном состоянии в природе не встречается, находится преимущественно в виде SiO 2 или силикатов.


Соединения Si токсичны; вдыхание мельчайших частиц SiO 2 и др. соединений кремния (например, асбеста) вызывает опасную болезнь - силикоз


В основном состоянии атом кремния имеет валентность = II, а в возбужденом состоянии = IV.


Наиболее устойчивой степенью окисления Si является +4. В соединениях с металлами (силицидах) С.О. -4.

Способы получения кремния

Самым распространенным природным соединением кремния является кремнезем (диоксид кремния) SiО 2 . Он является основным сырьем для получения кремния.


1) Восстановление SiO 2 углеродом в дуговых печах при 1800"С: SiO 2 + 2С = Si + 2СО


2) Высокочистый Si из технического продукта получают согласно схеме:


a) Si → SiCl 2 → Si


б) Si → Mg 2 Si → SiH 4 → Si

Физические свойства кремния. Аллотропные модификации кремния

1) Кристаллический кремний - вещество серебристо - серого цвета с металлическим блеском, кристаллическая решетка типа алмаза; т. пл. 1415"С, т. кип. 3249"С, плотность 2,33 г/см3; является полупроводником.


2) Аморфный кремний - порошок бурого цвета.

Химические свойства кремния

В большинстве реакций Si выступает в роли восстановителя:

При низких температурах кремний химически инертен, при нагревании его реакционная способность резко возрастает.


1. С кислородом взаимодействует при Т выше 400°С:


Si + О 2 = SiO 2 оксид кремния


2. С фтором реагирует уже при комнатной температуре:


Si + 2F 2 = SiF 4 тетрафторид кремня


3. С остальными галогенами реакции идут при температуре = 300 - 500°С


Si + 2Hal 2 = SiHal 4


4. С парами серы при 600°С образует дисульфид:



5. Реакция с азотом происходит выше 1000°С:


3Si + 2N 2 = Si 3 N 4 нитрид кремния


6. При температуре = 1150°С реагирует с углеродом:


SiO 2 + 3С = SiС + 2СО


По твердости карборунд близок к алмазу.


7. С водородом кремний непосредственно не реагирует.


8. Кремний стоек к действию кислот. Взаимодействует только со смесью азотной и фтороводородной (плавиковой) кислот:


3Si + 12HF + 4HNO 3 = 3SiF 4 + 4NO + 8H 2 O


9. реагирует с растворами щелочей с образованием силикатов и выделением водорода:


Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2


10. Восстановительные свойства кремния используют для выделения металлов из их оксидов:


2MgO = Si = 2Mg + SiO 2

В реакциях с металлами Si - окислитель:

Кремний образует силициды с s-металлами и большинством d-металлов.


Состав силицидов данного металла может быть различен. (Например, FeSi и FeSi 2 ; Ni 2 Si и NiSi 2 .) Один из наиболее известных силицидов - силицид магния, который можно получать прямым взаимодействием простых веществ:


2Mg + Si = Mg 2 Si

Силан (моносилан) SiH 4

Силаны (кремневодороды) Si n H 2n + 2 , (ср. с алканами), где п = 1-8. Силаны - аналоги алканов, отличаются от них неустойчивостью цепей -Si-Si-.


Моносилан SiH 4 - бесцветный газ с неприятным запахом; растворяется в этаноле, бензине.


Способы получения:


1. Разложение силицида магния соляной кислотой: Mg 2 Si + 4HCI = 2MgCI 2 + SiH 4


2. Восстановление галогенидов Si алюмогидридом лития: SiCl 4 + LiAlH 4 = SiH 4 + LiCl + AlCl 3


Химические свойства.


Силан - сильный восстановитель.


1.SiH 4 окисляется кислородом даже при очень низких температурах:


SiH 4 + 2O 2 = SiO 2 + 2Н 2 О


2. SiH 4 легко гидролизуется, особенно в щелочной среде:


SiH 4 + 2Н 2 О = SiO 2 + 4Н 2


SiH 4 + 2NaOH + Н 2 О = Na 2 SiO 3 + 4Н 2

Оксид кремния (IV) (кремнезем) SiO 2

Кремнезем существует в виде различных форм: кристаллической, аморфной и стеклообразной. Наиболее распространенной кристаллической формой является кварц. При разрушении кварцевых горных пород образуются кварцевые пески. Монокристаллы кварца - прозрачны, бесцветны (горный хрусталь) или окрашены примесями в различные цвета (аметист, агат, яшма и др.).


Аморфный SiO 2 встречается в виде минерала опала: искусственно получают силикагель, состоящий из коллоидных частиц SiO 2 и являющийся очень хорошим адсорбентом. Стеклообразный SiO 2 известен как кварцевое стекло.

Физические свойства

В воде SiO 2 растворяется очень незначительно, в органических растворителях также практически не растворяется. Кремнезем является диэлектриком.

Химические свойства

1. SiO 2 - кислотный оксид, поэтому аморфный кремнезем медленно растворяется в водных растворах щелочей:


SiO 2 + 2NaOH = Na 2 SiO 3 + Н 2 О


2. SiO 2 взаимодействует также при нагревании с основными оксидами:


SiO 2 + К 2 О = K 2 SiO 3 ;


SiO 2 + СаО = CaSiO 3


3. Будучи нелетучим оксидом, SiO 2 вытесняет углекислый газ из Na 2 CO 3 (при сплавлении):


SiO 2 + Na 2 CO 3 = Na 2 SiO 3 + CO 2


4. Кремнезем реагирует с фтороводородной кислотой, образуя кремнефтористоводородную кислоту H 2 SiF 6:


SiO 2 + 6HF = H 2 SiF 6 + 2Н 2 О


5. При 250 - 400°С SiO 2 взаимодействует с газообразным HF и F 2 , образуя тетрафторсилан (тетрафторид кремния):


SiO 2 + 4HF (газ.) = SiF 4 + 2Н 2 О


SiO 2 + 2F 2 = SiF 4 + O 2

Кремниевые кислоты

Известны:


Ортокремниевая кислота H 4 SiО 4 ;


Метакремниевая (кремниевая) кислота H 2 SiO 3 ;


Ди- и поликремниевые кислоты.


Все кремниевые кислоты малорастворимы в воде, легко образуют коллоидные растворы.

Способы по-лучения

1. Осаждение кислотами из растворов силикатов щелочных металлов:


Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl


2. Гидролиз хлорсиланов: SiCl 4 + 4Н 2 О = H 4 SiO 4 + 4HCl

Химические свойства

Кремниевые кислоты - очень слабые кислоты (слабее угольной кислоты).


При нагревании они дегидратируются с образованием в качестве конечного продукта кремнезема


H 4 SiО 4 → H 2 SiO 3 → SiO 2

Силикаты - соли кремниевых кислот

Поскольку кремниевые кислоты чрезвычайно слабые, их соли в водных растворах сильно гидро лизованы:


Na 2 SiO 3 + Н 2 О = NaHSiO 3 + NaOH


SiO 3 2- + Н 2 О = HSiO 3 - + ОН - (щелочная среда)


По этой же причине при пропускании углекислого газа через растворы силикатов происходит вытеснение из них кремниевой кислоты:


K 2 SiO 3 + СO 2 + Н 2 О = H 2 SiO 3 ↓ + K 2 СO 3


SiO 3 + СO 2 + Н 2 О = H 2 SiO 3 ↓ + СO 3


Данную реакцию можно рассматривать как качественную реакцию на силикат-ионы.


Среди силикатов хорошо растворимыми являются только Na 2 SiO 3 и K 2 SiO 3 , которые называются растворимым стеклом, а их водные растворы - жидким стеклом.

Стекло

Обычное оконное стекло имеет состав Na 2 O СаО 6SiO 2 , т. е. является смесью силикатов натрия и кальция. Его получают сплавлением соды Na 2 CO 3 , известняка СаСO 3 и песка SiO 2 ;


Na 2 CO 3 + CaCO 3 + 6SiO 2 = Na 2 O СаО 6SiO 2 + 2СO 2

Цемент

Порошкообразный вяжущий материал, образующий при взаимодействии с водой пластичную массу, превращающуюся со временем в твердое камневидное тело; основной строительный материал.


Химический состав наиболее распространенного портланд-цемента (в % по массе) - 20 - 23% SiO 2 ; 62 - 76 % СаО; 4 - 7 % Al 2 O 3 ; 2-5% Fe 2 O 3 ; 1- 5% МgО.