Расчет энергетической зависимости чувствительности счетчиков гейгера мюллера. Счетчик гейгера - это просто

Регистрация ионизирующих излучений приборами основана на преобразовании излучений детектором и измерительной схемой в электрические сигналы, принятые в практике измерений.

Приборы для измерения ионизирующих излучений могут регистрировать различные физические величины. Наиболее интересны следующие из них: поглощенная, экспозиционная и эквивалентная дозы и их мощность, плотность потока частиц, флюенс частиц, объемная, массовая, поверхностная, эффективная активности.

Любой прибор, измеряющий ионизирующие излучения, содержит детектор, измерительную схему (регистратор или анализатор) и вспомогательные элементы.

Детектор преобразует информацию о параметрах излучений в энергию электрического сигнала. По преобразованию энергии излучения в другие виды энергии детекторы можно разделить на следующие группы:

  • ионизационные (газовые счетчики, ионизационные камеры, полупроводниковые счетчики);
  • сцинтилляционные;
  • фотографические;
  • химические.

Измерительная схема выделяет, преобразует, накапливает, хранит и выдает информацию в виде электрических сигналов, удобных для наблюдения, записи, вычисления или управления другими приборами. Вспомогательные элементы обеспечивают заданные режимы работы детектора и измерительной схемы. К ним относятся источники питания, блоки программирования режима работы, контроля исправности и градуировки, регистрирующие устройства (цифропечатающие устройства, самописцы, осциллографы, счетчики импульсов и т.д.).

Функциональные схемы приборов в значительной мере определяются формой сигналов, поступающих от детекторов излучений и с выхода измерительной схемы (в виде импульсов – дискретная форма информации или в виде медленно меняющегося тока (напряжения) – аналоговая форма информации).

Приборы с дискретной формой входной и выходной информации могут включать в себя усилители, стандартизаторы и дискриминаторы импульсов, счетные и анализирующие схемы с суммированием и памятью двоичным, десятичным и другими способами счисления.

Импульсы, несущие информацию о параметрах излучения, могут отличаться по амплитуде, форме и времени появления. Разделением этих импульсов но их параметрам с помощью анализирующих устройств удается измерять не только плотность потока излучения по средней скорости следования импульсов, но и энергию, вид и пространственное распределение излучения.

Анализирующие устройства обычно работают в двух режимах обработки информации. В первом случае анализатором отбираются импульсы с заданными параметрами, во втором – сигналы отбираются по группам в зависимости от заданных параметров отбора.

В приборах с аналоговым видом входной и выходной информации применяются электрометрические и выходные усилители постоянного тока. В схемах с предварительным преобразованием постоянного тока в переменный используются преобразователи и усилители переменного тока.

Для перекрытия необходимого диапазона измерений с заданной точностью в устройствах с аналоговым видом выходной информации применяются показывающие и самопишущие приборы с линейной и нелинейной шкалами (логарифмической, линейно-логарифмической и т.д.), а также цифровые вольтметры с цифропечатающими устройствами.

Информация на выходе приборов может быть как дискретной, так и аналоговой независимо от формы информации на входе.

Аналоговая информация, поступающая от токовых детекторов излучений (ионизационные камеры), в ряде приборов преобразуется в дискретную путем дозирования – квантования зарядов.

Значительное число приборов с дискретной информацией на входе имеют аналоговую выходную информацию; к ним относятся радиометры, рентгенометры, интенсиметры с измерителями средней скорости следования импульсов.

Результаты измерений могут представляться в виде сигналов, наблюдаемых визуально (показания стрелочных приборов, на экране осциллографа или компьютера и т.д.); зафиксированных регистрирующим устройством (счетчиком импульсов, самописцем, цифропtчатающим устройством и т.д.). Сигналы могут быть звуковыми, генерируемыми телефонами, звонками, сиренами и т.д., подаваться для управления другими приборами.

Любой вид излучения при взаимодействии с веществом приводит к появлению ионизации и возбуждения. Заряженные частицы вызывают эти процессы непосредственно, при поглощении g-квантов ионизацию создают быстрые электроны, возникающие в результате фотоэффекта, эффекта Комптона или при рождении пар, а в случае нейтронов ионизация создается быстролетящими ядрами. При этом одна первичная частица может привести к появлению сотен тысяч ионов, благодаря чему сопровождающие ионизацию вторичные эффекты (электрический ток, вспышка света, потемнение фотопластинки и др.) могут быть замечены человеком непосредственно с помощью его органов чувств; иногда эти эффекты остается лишь усилить в нужное число раз. Таким образом, ионизация является как бы своеобразным усилителем явлений взаимодействия ионизирующего излучения с веществом. Поэтому работа всех регистрирующих приборов так или иначе связана с использованием ионизации и возбуждения атомов вещества.

Электроны, образующиеся при различных видах взаимодействий, тормозятся в среде, затрачивая свою энергию на ионизацию и возбуждение атомов. Образовавшиеся ионы и свободные электроны быстро рекомбинируют, так что заряд через очень короткое время (10-5 с для газов) исчезает. Этого не происходит, если в среде создать электрическое поле. В этом случае носители заряда будут дрейфовать вдоль поля, положительные в одну сторону, отрицательные – в другую. Движение зарядов является электрическим током, измерив который, можно определить величину заряда.

Именно так действует ионизационная камера. Она представляет из себя герметичный объем, наполненный газом, в котором расположены два металлических электрода (рис. 7.1). К электродам приложено электрическое напряжение. При прохождении электрона, образовавшегося при взаимодействии γ-кванта с веществом, свободные заряды – ионы и электроны – дрейфуют к электродам, и в цепи возникает импульс тока, пропорциональный заряду, образованному электроном.

Рис. 7.1.

К сожалению, импульсы тока от электронов, образованных частицами малых энергий и γ-квантами, очень малы. Их трудно точно измерить, поэтому ионизационные камеры используются для регистрации тяжелых частиц, например, α-частиц, которые образуют при прохождении через ионизационную камеру значительно бо́льшие импульсы тока.

Если повысить напряжение на электродах ионизационной камеры, то возникает явление, названное газовым усилением. Свободные электроны, двигаясь в электрическом поле, приобретают энергию, достаточную для ионизации атомов газа, наполняющего камеру. При ионизации электрон образует еще одну пару ион – электрон, так что общее количество зарядов умножается на два, как это показано на рис. 7.2. В свою очередь новообразовавшиеся электроны тоже способны к ионизации, и таким образом заряд умножается еще и еще. При специальной форме электродов коэффициент газового усиления может достигать 105. Существенным здесь является тот факт, что конечный заряд остается пропорционален первичному, а значит, и энергии электрона, образованного частицей или γ-квантом. Именно по этой причине такие приборы называются пропорциональными счетчиками.

Обычно пропорциональный счетчик делают в виде цилиндра, вдоль оси которого натягивают тонкую металлическую проволочку – нить. К корпусу счетчика подключают отрицательный, а к нити – положительный полюс источника тока. При таком устройстве электрическое поле сосредоточивается главным образом около нити и максимальное значение напряженности поля оказывается тем выше, чем меньше радиус нити. Поэтому необходимые для газового усиления большие напряженности полей удается получить при сравнительно небольших разностях потенциалов между корпусом счетчика и нитью.

Рис. 7.2.

Пропорциональные счетчики получили широкое распространение благодаря своей простоте и большим импульсам тока при прохождении заряженных частиц. Сейчас пропорциональные счетчики используют главным образом для регистрации β-излучения, мягкого γ-излучения, α-частиц и нейтронов. На рис. 7.3 представлены основные тины пропорциональных счетчиков.

Рис. 7.3.

В электрическую цепь пропорциональный счетчик включается так же, как и ионизационная камера. И электрические импульсы от него получаются такие же, как от камеры, только большей величины. Казалось бы, стоит только применить достаточно высокое напряжение, чтобы газовое усиление было больше, и пропорциональный счетчик даст настолько большие импульсы, что работать с ними можно будет без дальнейшего усиления. Однако на самом деле это не так. Дело в том, что при больших газовых усилениях счетчик начинает работать нестабильно и пропорциональность между энергией частиц и амплитудой импульса нарушается.

Чтобы избежать появления пробоев и выровнять электрическое поле, счетчик приходится делать очень тщательно, зачищая и полируя его электроды. Отполировать же нить, диаметр которой измеряется сотыми долями миллиметра, очень сложно. Если электрическое поле в счетчике будет неоднородным вдоль нити, то импульс будет зависеть не только от энергии частицы, но и от места ее попадания в счетчик, что, естественно, нежелательно.

Поэтому конструкцию пропорционального счетчика часто приходится усложнять, вводя в него дополнительные электроды для выравнивания поля. В результате всех этих усложнений удается изготовить счетчики с газовыми усилениями в десятки, сотни, а иногда даже в тысячи раз, но и этого зачастую оказывается слишком мало, чтобы с получаемыми от них импульсами можно было работать без последующего усиления.

Рассмотрим, что произойдет, если еще больше увеличить напряжение между электродами счетчика. В этом случае при попадании в счетчик заряженной частицы образуется чрезвычайно мощная лавина электронов, которая с большой скоростью обрушивается на положительный электрод и выбивает из него несколько фотонов – квантов ультрафиолетового излучения.

Эти фотоны, попадая на отрицательный электрод, могут вырвать новые электроны, последние опять устремятся к положительному электроду и т.д. В результате в счетчике возникает так называемый самостоятельный разряд, который будет гореть с постоянной силой независимо от того, попадают в счетчик новые частицы или нет. (Точно так горит разряд в неоновых трубках световых реклам.)

Счетчик же должен реагировать на каждую попадающую в него частицу, поэтому такой режим работы никому не нужен. Однако, применяя специальные схемы включения или добавляя в атмосферу счетчика некоторые тяжелые газы, можно создать условия, при которых возникший при попадании в счетчик частицы самостоятельный разряд сам по себе будет гаснуть через очень короткое время. Таким образом, попадание в счетчик каждой новой частицы будет вызывать появление кратковременного, но довольно сильного тока.

Самым распространенным детектором (датчиком) ионизирующего излучения, работающим в описанном выше режиме, является счетчик Гейгера – Мюллера. Принцип его работы основан на возникновении разряда в газе при пролете ионизирующих частиц. В хорошо вакуумированный герметичный баллон с двумя электродами, находящийся под напряжением, введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона (устройство должно регистрировать β- и γ-излучение). Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное "окно".

К электродам прикладывают высокое напряжение U (рис. 7.4), которое само по себе не вызывает каких-либо разрядных явлений. В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации – след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют "по дороге" другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Рис. 7.4.

Обратный процесс – возвращение газовой среды в ее исходное состояние в так называемых галогеновых счетчиках – происходит сам собой. В действие вступают галогены (обычно хлор или бром), в небольшом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие – "мертвое" время – является важной его паспортной характеристикой. Например, для газоразрядного счетчика Гейгера – Мюллера, типа СБМ-20-1 "мертвое" время при U = 400 В составляет 190 Р/мкс.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения – альфа, бета, гамма, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции.

Амплитуда импульса от счетчика Гейгера – Мюллера может достигать нескольких десятков или даже сот вольт. С такими импульсами можно работать без всякого усиления. Но эта победа была завоевана дорогой ценой. Дело в том, что амплитуда импульса в счетчике Гейгера – Мюллера определяется только свойствами самого счетчика и параметрами электрической цепи и совершенно не зависит ни от вида, ни от энергии первичной частицы.

Импульсы от медленного электрона, создавшего всего лишь несколько пар ионов, и от α-частицы, создавшей несколько тысяч ионов, оказываются одинаковыми. Поэтому счетчики Гейгера – Мюллера можно использовать только для подсчета числа пролетевших частиц в однородных полях излучений, но не для определения их типа и энергии.

Счетчик Гейгера - прототип современных дозиметров или, как их еще называют, радиометров. С помощью малогабаритного и простого прибора можно узнать уровень радиации еще до того, как он повлияет на здоровье человека.

Что измеряет счетчик Гейгера?

С помощью прибора определяется уровень радиационного излучения предметов и объектов:

  • Строительные материалы
  • Земельный участок
  • Помещение
  • Место отдыха
  • Продукты питания
  • Транспортные средства
  • Предметы быта
  • Одежда
  • Косметика
  • Детские игрушки

Как использовать дозиметр?

Средние показатели радиоактивности, признанные безопасными: 20-30мкР/час. Обычный радиационный фон - 0.22 МкЗв/час. Чтобы измерить уровень радиации, необходимо для начала включить прибор и обнулить показания дисплея. Само исследование занимает не более 60 секунд. При обследовании необходимо тщательно следить за чистотой самого устройства, так как мельчайшая пыль или влага могут повлиять на достоверность показаний. Поэтому прибор рекомендуют использовать в защитном чехле.

Определяем уровень радиации в продуктах

Фрукты и овощи, принесенные с рынка, лесные грибы и ягоды могут быть не безопасными для здоровья. Дозиметр развеет все сомнения - для этого необходимо поднести включенный прибор к продуктам (без упаковки и весом до 1кг) на расстоянии 1-5см. Так же можно узнать уровень радиации в питьевой воде, молоке, других жидких продуктах. Измерение проводится над открытой емкостью с жидкостью. Показания прибора могут быть несколько выше при измерении радиации в чае или сушеных грибах, так как в них концентрированный состав микроэлементов.

Измерение радиации в жилище

Чтобы проверить уровень радиации в помещении, необходимо пройтись с прибором вдоль стен и как можно ближе к полу. Для жилых помещений нормальным уровнем радиации считается 25мкР\ч. Цифра 30мкР/час - это уже предельно допустимая норма для домов, при строительстве которых использовались бетон, гранит, щебень. Важно производить измерения в разных местах дома, так как скрытым источником опасной радиации могут быть мебель, старинные вещи, раритетная техника. Стоит учесть, что кирпичи может давать показания радиоактивности в 2 раза больше допустимой нормы. Поэтому камин или печь измеряют на расстоянии 40-50см.

Измерение уровня радиации на открытом пространстве

Источником радиации могут быть осадки, ветер со стороны предприятий, растения, камни или обычный песок на детской площадке. Дозиметр позволяет с высокой точностью определить источник радиации. Особенно это важно при выборе места для строительства дома, отдыха или просто прогулки по мегаполису. Оценку уровня радиации проводят на расстоянии 1м от почвы и 0,5м от зданий.

В связи с тем, что после катастрофы Чернобыльской АЭС дозиметры стали очень популярны в нашей стране, на рынках появилось очень много подделок и не качественных приборов. Самым надежным продавцом техники для заботы о здоровье является специализированный «Мед-Магазин».

Семь причин, почему дозиметр необходимо приобретать в Мед-Магазине:

1-й Компания сотрудничает с официальными представителями известных торговых марок

2-й Большой выбор позволяет приобрести простейшую модель или дозиметр для профессиональных исследований

3-й Приемлемые цены - от самых недорогих дозиметров до более усовершенствованных моделей

4-й Вся продукция сертифицирована

5-й Покупка оформляется на сайте «Мед-Магазин», не выходя из дома.

6-й Есть возможность замены или возврата товара.

7-й Работает онлайн-служба технической поддержки.

Давно не проблема купить прибор под условным названием «бытовой дозиметр» (были б деньги - в этом смысле, Фукусима радиофобам и радиофилам (TM) подгадила), но думаю, что этот прибор было бы интересно сделать своими руками.

Сердцем нашего прибора будет счетчик Гейгера. Мы знаем, конечно, что у этого детектора есть куча недостатков и вообще «прибор должен быть сцинтилляционным», но сцинтилляционный радиометр существенно сложнее и у меня под него задуман следующий пост. Тем более, у счетчика Гейгера-Мюллера есть и ряд неоспоримых достоинств.

Итак, начнем.

Детектор

Итак, счетчик Гейгера-Мюллера. (рис.1) Простейшее устройство, состоящее из двух электродов, помещенных в газовую среду при низком давлении - катод, имеющий большую площадь, и анод в виде более-менее тонкой проволоки, создающий локальное поле большой напряженности. в котором развивается процесс размножения ионов, за счет которого единственная ионная пара может вызвать мощную лавину ионизации и зажигание самостоятельного разряда.


Рис. 1. Счетчик Гейгера-Мюллера. 1 - анод, 2 - катод, 3 - баллон, 4 - вывод катода, 5, 6 - пружины, натягивающие нить катода.

По сути счетчик работает, как тиратрон с холодным катодом, только разряд в нем зажигается от ионизации, вызванной не импульсом с сетки, а пролетевшей через газ заряженной частицей. После того, как разряд загорелся, его нужно погасить либо снятием с анода напряжения, либо… Либо он погаснет сам. Но для этого в газовую среду счетчика надо ввести что-то, что под действием разряда перейдет в форму, которая сделает газ непрозрачным для ультрафиолетового излучения и из-за этого исчезнет один из факторов поддержания самостоятельного разряда - фотоэлектронная эмиссия. Таких добавок две: спирт и галогены (хлор, бром и йод). Первый в разряде разлагается, превращаясь, грубо говоря, в сажу, и потом обратно в спирт не превращается, и через несколько десятков тысяч импульсов кончится и счетчику конец. А галогены становятся из молекулярных атомарными, причем процесс обратим. Они тоже кончаются - из-за того, что атомарные галогены с легкостью реагируют со всем попало, включая стенки счетчика, но чаще они успевают рекомбинировать друг с другом, поэтому галогенные счетчики гораздо более долговечны, выдерживая миллиарды импульсов. Нас интересуют в первую очередь галогенные счетчики, потому что:

А) они долговечнее,
б) они работают при 400-500 В, а не при полутора тысячах, как спиртовые,
в) они просто наиболее распространены.
В таблице 1 я привел несколько распространенных счетчиков Гейгера и их основные параметры.

Таблица 1.
Основные параметры некоторых счетчиков Гейгера-Мюллера.


Примечания: 1 - чувствительность к альфа-излучению не регламентирована; 2 - мелкосерийный счетчик, данные по нему скудны.

Чувствительность

Выбирая счетчик Гейгера для нашего дозиметра, нужно в первую очередь смотреть на его чувствительность. Ведь вряд ли вы хотите прибор, который что-то покажет только там, где пару часов назад взорвалась «Кузькина мать». А таких счетчиков, между тем, предостаточно, и за их почти полной бесполезностью для обывателя, они очень дешево стоят. Это всевозможные СИ-3БГ, СИ-13Г и прочие «счетчики судного дня», стоящие в армейских дозиметрах для работы на верхнем пределе измерений. Чем счетчик чувствительнее, тем больше импульсов в секунду он при одном и том же уровне радиации даст. Классический счетчик СБМ-20 (он же более ранних выпусков носил название СТС-5), который традиционно ставили во все перестроечно-постчернобыльские «трещалки», при естественном фоне в 12 мкР/ч дает около 18 импульсов в минуту. От этой цифры удобно плясать, считая чувствительность счетчика в «СБМ-20».

Что нам дает чувствительность счетчика? Точность и скорость реакции. Дело в том, что частицы радиоактивных излучений прилетают к нам не по расписанию, а как придется, да и счетчик какую-то из них пропустит, а от какой-то сработает (от фотонов гамма-излучения - примерно от одного из нескольких сотен). Так что импульсы от счетчика Гейгера (да и от любого счетного детектора радиации) идут в абсолютно случайные моменты времени с непредсказуемыми интервалами между ними. И посчитав количество импульсов в одну минуту, другую, третью - мы получим различные значения. И среднеквадратичное отклонение этих значений, то есть погрешность определения скорости счета, будет пропорционален квадратному корню из числа зарегистрированных импульсов. Чем больше будет импульсов, тем меньше будет относительная (в процентах от измеряемой величины) погрешность их счета: .
Когда у нас детектор - упомянутый «эталонный» СБМ-20, а время счета - 40 секунд (так делали в простых бытовых дозиметрах, непосредственно показывая число сосчитанных импульсов в качестве уровня мощности дозы в мкР/ч), на естественном фоне количество импульсов - ~10 штук. А это значит, что среднеквадратическое отклонение - около трех. А погрешность при 95% доверительной вероятности - вдвое больше, то есть 6 импульсов. Таким образом, мы имеем грустную картинку: показания дозиметра 10 мкР/ч означают, что мощность дозы составляет где-то от 4 до 16 мкР/ч. А об обнаружении аномалии мы сможем говорить только когда дозиметр покажет отклонение в три сигмы, то есть больше 20 мкР/ч…

Чтобы точность увеличить, можно увеличить время счета. Если мы сделаем его три минуты, то есть в четыре раза больше, мы учетверим и число импульсов, а значит, удвоим точность. Но тогда мы потеряем реакцию прибора на короткие всплески излучения, например, на прошедшего мимо вас «вашего сиятельства» после сцинтиграфии или радиойодтерапии или наоборот, когда вы проходите на радиобазаре мимо часов с СПД. А взяв вчетверо более чувствительный детектор (4 параллельно соединенных СБМ-20, один СБМ-19, СБТ-10 или СИ-8Б) и оставив то же время измерения, мы и точность повысим, и скорость реакции сохраним.

Альфа, бета, гамма и конструкция счетчиков

Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.

Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.

А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы. Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б - где-то посередине между ними.

А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения - это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала - в сто и более раз меньше, чем для бета-излучения.

Питание

Для работы счетчик Гейгера требует высоковольтного питания. Типичные галогенные приборы советского-российского производства требуют напряжения около 400 В, многие западные счетчики рассчитаны на 500 или 900 В. Некоторые счетчики требуют напряжения до полутора киловольт - это старые счетчики со спиртовым гашением типа МС и ВС, счетчики рентгеновского излучения для рентгеноструктурного анализа, нейтронные. Нас они не будут сильно интересовать. Питание на счетчик подается через балластное сопротивление в несколько мегаом - оно ограничивает импульс тока и снижает напряжение на счетчике после прохождения импульса, облегчая гашение. Величина этого сопротивления приводится в справочных данных на конкретный прибор - его слишком малая величина сокращает жизнь детектора, а слишком большая - увеличивает мертвое время. Обычно его можно взять около 5 МОм.

При увеличении напряжения от нуля счетчик Гейгера сначала работает, как обыкновенная ионизационная камера, а затем, как пропорциональный счетчик: каждая из пар ионов, которые образовались при пролете частицы, порождает небольшую ионов, увеличивая ионный ток в сотни и тысячи раз. При этом на нагрузочном сопротивлении в цепи счетчика уже можно обнаружить очень слабые, измеряемые милливольтами, импульсы. С ростом напряжения лавины становятся все больше, и в какой-то момент самые сильные из них начинают поддерживать сами себя, зажигая самостоятельный разряд. В этот момент вместо слабых, милливольтовых импульсов от лавин, проходящих через межэлектродное пространство и исчезающих на электродах, появляются гигантские, амплитудой в несколько десятков вольт! И их частота с ростом напряжения быстро растет, пока вспышку разряда не начнет вызывать каждая лавина Очевидно, что при дальнейшем росте напряжения скорость счета должна перестать расти. Так оно и происходит: на зависимости чувствительности от напряжения наблюдается плато .

Все же рост напряжения не оставляет скорость счета неизменной: разряд может возникнуть и просто так, от спонтанной эмиссии. И с ростом напряжения вероятность такого разряда только увеличивается. Поэтому плато получается наклонным, а начиная с некоторого напряжения скорость счета начинает быстро расти, а затем разряд переходит в непрерывный. В таком режиме, понятное дело, счетчик не только не выполняет своей функции, но и быстро выходит из строя.


Рис. 2. Зависимость скорости счета счетчика Гейгера от напряжения питания.

Наличие плато существенно облегчает питание счетчика Гейгера - ему не требуются высокостабильные источники высокого напряжения, какие требуются для сцинтилляционных счетчиков. Длина этого плато для низковольтных счетчиков - 80-100 В. Во многих советских бытовых дозиметрах кооперативного происхождения и практически во всех любительских конструкциях того времени питание счетчика было сделано от преобразователя напряжения на основе блокинг-генератора без всякого намека на стабилизацию. Расчет был таким: при свежей батарейке напряжение на аноде счетчика соответствовало верхней границе плато, так что нижней границы плато высокое напряжение достигало уже при изрядно разряженной батарейке.

Фон и мертвое время

Любой детектор любого излучения всегда имеет некоторый темновой сигнал, регистрируемый, когда на детектор не падает никакое излучение. Счетчик Гейгера-Мюллера - не исключение. Одним из источников темнового фона является упоминавшаяся выше спонтанная эмиссия. Вторым - радиоактивность самого счетчика, что особенно актуально для счетчиков со слюдяным окном, так как природная слюда неизбежно содержит примеси урана и тория. И если последняя практически не зависит ни от чего и является константой для данного экземпляра детектора, то фон от спонтанной эмиссии зависит от величины высокого напряжения, температуры, «возраста» счетчика. Из-за этого становится плохой идеей питать нестабилизированным напряжением счетчик, которым мы будем пользоваться в основном при измерениях низких уровней радиации: собственный фон счетчика от напряжения питания зависит весьма существенно.

Скорость счета от собственного фона достигает у счетчиков Гейгера уровня, соответствующего 3-10 мкР/ч, то есть составляет заметную долю скорости счета при нормальной радиационной обстановке. Особенно велик фон у слюдяных датчиков - СБТ-10, СИ-8Б, «Бета». Так что его обязательно нужно вычитать из результатов измерения. Но для этого его нужно знать. Справочник тут не поможет: там приведены лишь максимальные значения. Чтобы собственный фон измерить, нужен свинцовый «домик» толщиной не менее 5 см, при этом внутреннюю поверхность нужно покрыть листами меди толщиной 2-3 мм и 5 мм оргстеклом. Дело в том, что «домик» будет находиться под обстрелом космических лучей, которые делают сам домик источником рентгеновского излучения, главным образом в характеристических линиях свинца. И если сделать защиту только из свинца, это флюоресцентное «свечение» и «увидит» счетчик - вместо полной «темноты». А оргстекло нужно от выбиваемых той же космикой из свинца и меди электронов, энергия которых тоже достаточна для обнаружения счетчиком Гейгера.

При измерении фона следует учитывать, что свинцовый «домик» не оказывает никакого препятствия для космических мюонов. Их поток составляет ~0,015 . Например, через счетчик СБМ-20 эффективной площадью ~8 пройдет 0,12 или 7,2 . Из-за большой энергии эффективность регистрации космических мюонов практически любым счетчиком Гейгера можно принимать за 100%, и эту величину следует вычесть из темнового фона.

Если собственный фон - источник погрешностей при низких уровнях, то мертвое время сказывается при больших уровнях радиации. Сущность явления состоит в том, что сразу после импульса емкость счетчика еще не зарядилась до первоначального напряжения через нагрузочное сопротивление. Кроме того, в счетчике только погас разряд - но гасящая присадка еще не успела вернуться в первоначальное состояние. Поэтому у счетчика на 150-200 мкс возникает состояние, когда он оказывается нечувствителен к следующей частице, после чего он постепенно восстанавливает чувствительность. (рис. 3)


Рис. 3. Мертвое время счетчика Гейгера

Поправка на мертвое время находится по формуле:

где m и n, соответственно, измеренная и скорректированная скорости счета, а - мертвое время.

При очень больших уровнях радиации у многих счетчиков Гейгера (тут еще зависит и от остальной схемы) наступает неприятный и опасный эффект: постоянная ионизация мешает формироваться отдельным импульсам. Счетчик начинает непрерывно «гореть» постоянным разрядом и скорость счета резко падает до очень малой величины. Вместо того, чтобы зашкалить, дозиметр показывает какие-то умеренно-повышенные, а то и почти нормальные цифры. А тем временем вокруг светят десятки и сотни рентген в час и надо бы бежать, но вы успокоены показаниями дозиметра. Именно поэтому в армейских дозиметрах почти всегда есть помимо основного чувствительного - счетчик «судного дня», очень малочувствительный, но зато способный переварить тысячи Р/ч.

От скорости счета к дозе. Ход с жесткостью и прочие нехорошие вещи

Вообще говоря, счетчик Гейгера не измеряет мощность дозы. Мы получаем лишь скорость счета - сколько импульсов в минуту или секунду выдал счетчик. К дозе - энергии, поглощенной в одном килограмме человеческого тела (или еще чего-либо) это имеет весьма отдаленное отношение. В первую очередь - в связи с принципом действия: счетчику Гейгера абсолютно плевать на природу частицы и ее энергию. Импульсы от фотонов любой энергии, бета-частиц, мюонов, позитронов, протонов - будут одинаковыми. А вот эффективность регистрации - разная.

Как уже я говорил, бета-излучение счетчик Гейгера регистрирует с эффективностью в десятки процентов. А гамма-гамма-кванты - только доли процента. И все это напоминает складывание метров с килограммами, да еще и с произвольно взятыми коэффициентами. Вдобавок, чувствительность счетчика к гамма-излучению неодинакова при разных энергиях (рис.4). Дозовая чувствительность к излучению разных энергий может отличаться почти на порядок. Природа этого явления понятна: гамма-излучение низкой энергии имеет гораздо больший шанс поглотиться тонким слоем вещества, поэтому чем энергия ниже, тем выше эффективность (пока не начнет сказываться поглощение в стенках счетчика). В области же высоких энергий наоборот: с ростом энергии эффективность регистрации растет, что является среди детекторов ионизирующего излучения достаточно необычным явлением.


Рис. 4. Энергетическая зависимость дозовой чувствительности счетчика Гейгера-Мюллера (слева) и результат ее компенсации с помощью фильтра.

К счастью, при высоких энергиях (выше 0,5-1 МэВ) эффективность счетчика Гейгера к гамма-излучению почти пропорциональна энергии. А значит, энергетическая зависимость дозовой чувствительности там невелика. А горб при малых энергиях легко убрать с помощью фильтра из свинца толщиной около 0,5 мм. Толщина фильтра подбирается таким образом, чтобы при энергии, соответствующей максимальной чувствительности детектора (это 50-100 кэВ в зависимости от толщины входного окна детектора) кратность поглощения составляла бы величину этого пика. Чем энергия больше, тем меньше поглощения в свинце, и при 500-1000 кэВ, где чувствительность детектора выравнивается сама, оно уже практически незаметно.

Более точной коррекции можно добиться, используя многослойный фильтр из разных металлов, который нужно подбирать к конкретному счетчику.

Такой фильтр сокращает «ход с жесткостью» до величины в 15-20% во всем диапазоне 50-3000 кэВ и превращает показометр (ну ладно, поисковый радиометр-индикатор) в дозиметр.

Такой фильтр обычно делают съемным, поскольку он делает датчик нечувствительным к альфа- и бета-излучению.

***

В общем-то, это все, что нужно знать про счетчик Гейгера-Мюллера конструктору приборов на его основе. Как видите, прибор и впрямь несложный, хотя ряд тонкостей имеется. В следующей серии мы на его основе что-нибудь полезное сконструируем.

1.4 Счётчик Гейгера-Мюллера

В пропорциональном счётчике газовый разряд развивается только в части объёма газа. В ней образуется сначала первичная ионизация, а затем и лавина электронов. Остальной объём не охватывается газовым разрядом. С повышением напряжения критическая область расширяется. В ней увеличивается концентрация возбуждённых молекул, а следовательно, и количество испущенных фотонов. Под действием фотонов из катода и молекул газа вырывается

всё больше и больше фотоэлектронов. Последние в свою очередь дают начала новым лавинам электронов в объёме счётчика, не занятом газовым разрядом от первичной ионизации. Таким образом, повышение напряжения U приводит к распространению газового разряда по объёму счётчика. При некотором напряженииU п . Называемом пороговым, газовый разряд охватывает весь объём счётчика. При напряженииU п начинается область Гейгера-Мюллера.

Счётчик Гейгера (или счётчик Гейгера-Мюллера) − газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме.Изобретён в 1908 г. Х.Гейгером и Э.Резерфордом, позднее усовершенствован Гейгером и В. Мюллером. Счетчики Гейгера-Мюллера - самые распространенные детекторы (датчики) ионизирующего излучения.

Гейгера - Мюллера счётчик - газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений:α - и β -частиц, γ -квантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах и на ускорителях. Гамма-кванты регистрируются счётчиком Гейгера – Мюллера по вторичным ионизирующим частицам - фотоэлектронам, комптоновским электронам, электронно-позитронным парам; нейтроны регистрируются по ядрам отдачи и продуктам ядерных реакций, возникающим в газе счётчика. Работает счётчик при напряжениях, соответствующих самостоятельному

коронному разряду (участок V, Рис. 21 ).

Рис. 21. Схема включения счетчика Гейгера

Разность потенциалов приложена (V ) между стенками и центральным электродом через сопротивлениеR , зашунтированное конденсатором

C1 .

Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для

возникновения разряда достаточно одной электрон-ионной пары.

Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой конденсатор (как правило, цилиндрический), с сильно неоднородным электрическим полем. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал (анод), к внешнему – отрицательный (катод). Электроды заключены в герметически замкнутый резервуар, наполненный каким-либо газом до давления 13-26 кн/м 2 (100-200 мм pm .ст .). К электродам счётчика прикладывается напряжение в несколько сотв . На нить подаётся знак + через сопротивлениеR .

Функционально счётчик Гейгера также повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией (газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым газом. При этом коэффициент газового усиления может достигать 1010 , а величина импульса десятков вольт.

Возникает вспышка коронного разряда и через счётчик течёт ток.

Распределение электрического поля в счётчике таково, что разряд развивается лишь в вблизи анода счётчика на расстоянии нескольких диаметров нити. Электроны быстро скапливаются на нити (не более 10-6 сек), вокруг которой образуется «чехол» из положительных ионов. Положительный пространственный заряд увеличивает эффективный диаметр анода и снижает тем самым напряжённость поля, поэтому разряд прерывается. По мере удаления слоя положительных ионов от нити его экранирующее действие ослабляется и напряжённость поля вблизи анода становится достаточной для образования новой вспышки разряда. Положительные ионы, приближаясь к катоду, выбивают из последнего электроны, в результате чего образуются нейтральные атомы инертного газа в возбуждённом состоянии. Возбуждённые атомы при

достаточном приближении к катоду, выбивают из его поверхности электроны, которые становятся родоначальниками новых лавин. Без внешнего воздействия такой счётчик находился бы в длительном прерывистом разряде.

Таким образом, при достаточно большом R (108 -1010 ом ) на нити скапливается отрицательный заряд

и разность потенциалов между нитью и катодом быстро падает, в результате чего разряд обрывается. После этого чувствительность счётчика восстанавливается через 10-1 -10-3 сек (время разрядки ёмкости С через сопротивлениеR ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду,

и восстановилась чувствительность детектора. Такое большое время нечувствительности неудобно для многих применений.

Для практического использования несамогасящего счётчика Гейгера используются различные способы прекращения разряда:

а) Использование электронных схем гашения разряда в газе. Приспособленная для этого электронная схема, в нужное время выдаёт на счётчик «противосигнал», который прекращает самостоятельный разряд и «выдерживает» счётчик на время до полной нейтрализации возникших заряженных частиц. Характеристики такого счётчика со схемой гашения разряда близки к характеристикам самогасящихся счётчиков и иногда превосходят их.

б) Гашение за счёт подбора величин нагрузочного сопротивления и эквивалентной ёмкости, а также величины напряжения на счётчике.

В зависимости от механизма гашения разряда различают две группы счётчиков: несамогасящиеся и самогасящиеся. В несамогасящихся счётчиках «мёртвое» время слишком велико (10-2 сек), для его

уменьшения применяют электронные схемы гашения разряда, которые снижают разрешающее время до времени собирания положительных ионов на катоде (10-4 сек).

Сейчас несамогасящиеся счётчики, в которых гашение разрядов обеспечивается сопротивлением R , вытеснены самогасящимися счётчиками, которые к тому же более стабильны. В них благодаря специальному газовому наполнению (инертный газ с примесью сложных молекул, например паров спирта, и небольшой

примесью галогенов - хлора, брома, йода) разряд сам собой обрывается даже при малых сопротивлениях R . Время нечувствительности самогасящегося счётчика ~10-4 сек .

В 1937 г. Трост обратил внимание на то обстоятельство, что если в счетчик, наполненный аргоном,

добавить небольшое количество (несколько процентов) паров этилового спирта (С2 H5 OH), то разряд, вызванный в счетчике ионизирующей частицей, погаснет сам по себе. Впоследствии выяснилось, что самопроизвольное погасание разряда в счетчике имеет место и при добавлении к аргону паров других органических соединений, обладающих сложными многоатомными соединениями. Вещества эти называют обычно гасящими, а счётчики Гейгера-Мюллера, в которых используются эти вещества, называются счетчиками - самогасящегося типа. Самогасящийся счётчик наполняется смесью двух (или нескольких) газов. Один газ, основной, составляет в смеси около 90 %, другой, гасящий - около 10 %. Компоненты рабочей смеси должны удовлетворять обязательному условию, заключающемуся в том, что потенциал ионизации гасящего газа должен быть ниже первого потенциала возбуждения основного газа.

Замечание. Для регистрации рентгеновского излучения часто применяются проволочные ксеноновые детекторы. Примером может служить первый отечественный сканирующий цифровой медицинский флюорограф МЦРУ СИБИРЬ. Другое приложение рентгеновских счётчиков - рентгенофлуоресцентный волнодисперсионный спектрометр (например, Venus 200), предназначенный для определения различных элементах в веществах и материалах. В зависимости от определяемого элемента возможно применение следующих детекторов: - проточного пропорционального детектора с окнами толщиной 1, 2, 6 микрон, непроточного неонового детектора с окнами толщиной 25 и 50 микрон, - непроточного криптонового детектора с окном толщиной 100 микрон, - ксенонового детектора с окном 200 микрон и сцинтилляционного детектора с окном 300 микрон.

Самогасящиеся счётчики допускают большую скорость счёта без специальных электронных схем

гашения разряда, поэтому они нашли широкое применение. Самогасящиеся счётчики с органическими гасящими примесями имеют ограниченный срок работы (108 -1010 импульсов). При использовании в качестве гасящей примеси одного из галогенов (чаще всего применяется менее активный Br2 ) срок службы становится практически неограниченным из-за того, что двухатомные молекулы галогена после диссоциации на атомы (в процессе разряда) образуются снова. К недостаткам галогенных счётчиков следует отнести сложность технологии их изготовления из-за химической активности галогенов и большое время нарастания переднего фронта импульсов из-за прилипания первичных электронов к молекуле галогена. «Затягивание» переднего фронта импульса в галогенных счётчиках делает их неприменимыми в схемах совпадений.

Основными характеристиками счётчика являются: счётная характеристика – зависимость скорости счёта от величины рабочего напряжения; эффективность счётчика – выраженное в процентах отношение числа считаемых частиц к числу всех частиц, попадающих в рабочий объём счётчика; разрешающее время –

минимальный интервал времени между импульсами, при котором они регистрируются раздельно и срок службы счётчиков.

Рис. 22. Схема возникновения мёртвого времени в счётчике Гейгера-Мюллера. (Форма импульса при разряде в счётчике Гейгера-Мюллера).

Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие - «мертвое» время - является важной его паспортной характеристикой.

Если в счётчике Гейгера-Мюллера в момент временt 0 начался разряд, вызванный ядерной частицей, то напряжение на счётчике резко падает. Счётчик в течение определённого времени, которое называется мёртвым временемτ м , не способен регулировать другие частицы. С моментаt 1 , т.е. по истечении мёртвого времени, в счётчике снова возможно возникновение самостоятельного разряда. Однако вначале амплитуда импульса ещё мала. Только после того, как пространственный заряд достигнет поверхности катода, в счётчике образуются импульсы нормальной амплитуды. Отрезок времениτ с между моментомt 0 , когда в счётчике возник самостоятельный разряд, и моментом восстановления рабочего напряженияt 3 называется временем восстановления. Для того чтобы регистрирующее устройство могло сосчитать импульс, необходимо, чтобы его амплитуда превышала определённую величинуU п . Интервал времени между моментом возникновения самостоятельного разрядаt 0 и моментом образования амплитудыU п импульсаt 2 называется разрешающим временемτ p счётчика Гейгера-Мюллера. Разрешающее времяτ p несколько больше мёртвого времени.

Если ежесекундно в счетчик попадает большое число частиц (несколько тысяч и более), то разрешающее время τ р по величине будет сравнимо со средним промежутком времени между импульсами, поэтому значительное число импульсов не сосчитывается. Пустьm - наблюдаемая скорость счета счетчика. Тогда доля времени, в течение которого счетная установка нечувствительна, равнаm τ . Следовательно, число импульсов, потерянных за единицу времени, равноnm τ р , гдеn - скорость счета, которая наблюдалась бы в том случае, если бы разрешающее время имело пренебрежимо малую величину. Поэтому

n – m = nmτ р

−m τ

Поправка в скорости счета, которая дается этим уравнением, называется поправкой на мертвое время установки.

Галогеновые самогасящиеся счётчики отличаются самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Каждая фиксируемая счетчиком частица вызывает появление в его выходной цепи короткого импульса. Число импульсов, возникающих в единицу времени, - скорость счета счетчика Гейгера - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания V показан наРис. 23. ЗдесьV заж - напряжение начала счета;V 1 иV 2 - нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжениеV раб обычно выбирают в середине этого участка. Ему соответствуетN р - скорость счета в этом режиме.

Рис. 23. Зависимость скорости счета от напряжения питания в счетчике Гейгера (Счётная характеристика)

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика. График этой зависимости имеет почти линейный характер и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). В

тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности

счетчика приходится по другому его тоже очень важному параметру - собственному фону. Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода. («фон» в дозиметрии имеет почти тот же смысл, что и «шум» в радиоэлектронике; в обоих случаях речь идет о принципиально неустранимых воздействиях на аппаратуру.)

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рисунке. «Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

В своей основе счетчик Гейгера очень прост. В хорошо вакуумированный герметичный баллон с двумя электродами введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона. Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно».

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α ,β ,γ , ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции. Так, входное окно счетчика, чувствительного кα - и мягкому β -излучению, должно быть очень тонким; для этого обычно используют слюду толщиной 3...10 мкм. Баллон счетчика, реагирующего на жесткоеβ - и γ -излучение, имеет обычно форму цилиндра с толщиной стенки 0,05....0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

Рис. 24. Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые α - частицы. Фотонное излучение -ультрафиолетовое, рентгеновское, γ -излучение - счетчики Гейгера воспринимают опосредованно - через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Рис. 25. Радиометрическая установка на базе счётчика Гейгера-Мюллера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы – по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α -частиц, электронов, γ -квантов (в счетчике, на все эти виды излучения реагирующем), ничем не различаются. Сами

частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

О качестве счетчика Гейгера-Мюллера судят обычно по виду его счетной характеристики. Для «хороших» счетчиков протяженность счетной части составляет 100-300 В при наклоне плато не более 3 - 5 % на 100 В. Рабочее напряжение счетчикаV раб выбирают обычно в середине его счетной области.

Поскольку скорость счета частиц на плато изменяется пропорционально интенсивности облучения ядерными частицами, счетчики Гейгера-Мюллера с успехом используются для относительных измерений активности радиоактивных источников. Абсолютные измерения затрудняются вследствие учета большого числа дополнительных поправок. При работе с источниками малой интенсивности следует учесть фон счетчика, обусловленный космическим излучением, радиоактивностью окружающей среды и радиоактивным загрязнением материала счетчика. В качестве наполняющих счетчик газов первоначально чаще всего использовались благородные газы, в частности, аргон и неон. У большинства счетчиков давление лежит в интервале от 7 до 20 см рт.ст, хотя они иногда работают и при больших давлениях, вплоть до 1 атм. В счётчиках такого типа необходимо применять специальные электронные схемы для гашения газового разряда, возникшего при попадании в счетчик ионизирующего излучения. Поэтому такие счетчики называются счетчиками Гейгера-Мюллера несамогасящегося типа. Они обладают весьма плохой разрешающей способностью. Применение схем для принудительного гашения разряда, улучшая

разрешающую способность, существенно усложняет экспериментальную установку, особенно в случае использования большого числа счетчиков одновременно.

Типичный стеклянный счётчик Гейгера-Мюллера представлен наРис. 25.

Рис. 25. Стеклянный счётчик Гейгера-Мюллера: 1 –

геометрически запаянная стеклянная трубка; 2 – катод (тонкий слой меди на трубке из нержавеющей стали); 3 – вывод катода; 4 – анод (тонкая натянутая нить).

В Табл. 1 приведены сведения о самогасящихся галогеновых счетчиках Гейгера

российского производства, наиболее подходящих для бытовых приборов радиационного контроля.

Обозначения: 1 - рабочее напряжение, В; 2 - плато - область малой зависимости скорости счета от напряжения питания, В; 3 - собственный фон счетчика, имп/с, не более; 4 - радиационная чувствительность счетчика, имп/мкР (* - по кобальту-60); 5 - амплитуда выходного импульса, В, не менее; 6 - габариты, мм - диаметр х длина (длина х ширина х

высота); 7.1 - жесткое β - иγ - излучение; 7.2 - то же и мягкоеβ - излучение; 7.3 - то же иα - излучение; 7.4 -γ - излучение.

Рис.26. Часы со встроенным счётчиком Гейгера-Мюллера.

Счетчик Гейгера-Мюллера, типа СТС-6, считаетβ иγ частицы и относится к самогасящимся счетчикам. Он представляет собой цилиндр из нержавеющей стали с толщиной стенок 50 мг/(см2 с) ребрами жесткости для прочности. Счетчик заполнен смесью паров неона и брома. Бром гасит разряд.

Конструкции счётчиков весьма разнообразны и зависят от вида излучения и его энергии, а также от методики измерения).

Радиометрическая установка на базе счётчика Гейгера - Мюллера представлена на Рис. 27. Напряжение на счётчик подаётся с высоковольтного источника питания. Импульсы со счетчика подаются в блок усилителя, где они усиливаются, и затем регистрируются пересчётным устройством.

Счётчики Гейгера-Мюллера применяются для регистрации всех видов излучения. Они могут быть использованы как для абсолютных, так и для относительных измерений радиоактивных излучений.

Рис. 27. Конструкция счётчиков Гейгера-Мюллера: а – цилиндрический; б

внутреннего наполнения; г – проточный для жидкостей. 1 – анод (собирающий электрод); 2 – катод; 3 – стеклянный баллон; 4 – выводы электродов; 5 – стеклянная трубка; 6 – изолятор; 7 – слюдяное окно; 8 – кран для впуска газа.

Счётчик Гейгера — газоразрядный прибор для счета числа прошедших через него ионизирующих частиц. Представляет собой газонаполненный конденсатор, пробивающийся при появлении ионизирующей частицы в объёме газа. Счетчики Гейгера — достаточно популярные детекторы (датчики) ионизирующего излучения. До сих пор им, изобретенным в самом начале нашего века для нужд зарождающейся ядерной физики, нет, как это ни странно, сколько-нибудь полноценной замены.

Конструкция счетчика Гейгера достаточно проста. В герметичный баллон с двумя электродами введена газовая смесь, состоящая из легко ионизируемых неона и аргона. Материал баллона может быть различным — стеклянным, металлическим и др.

Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно». Повсеместное применение счетчика Гейгера-Мюллера объясняется высокой чувствительностью, возможностью регистрировать различное излучение, сравнительной простотой и дешевизной установки.

Схема подключения счетчика Гейгера

К электродам подводят высокое напряжение U (см рис.), которое само по себе не вызывает каких-либо разрядных явлений. В таком состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации — след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют «по дороге» другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс заканчивается образованием в пространстве между электродами электронно-ионного облака, значительно увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Обратный процесс — востановление газовой среды в ее первоначальное состояние в так называемых галогеновых счетчиках — происходит само собой. В ход вступают галогены (обычно хлор или бром), в малом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс протекает достаточно медленно. Время, необходимое для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие — «мертвое» время — является главной его паспортной характеристикой.

Такие счетчики обозначаются как галогеновые самогасящиеся. Отличаясь очень низким напряжением питания, хорошими параметрами выходного сигнала и достаточно высоким быстродействием, они оказались востребованными в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Счетчики Гейгера способны обнаруживать самые разные виды ионизирующего излучения — a, b, g, ультрафиолетовое, рентгеновское, нейтронное. Но действительная спектральная чувствительность счетчика очень зависит от его конструкции. Так, входное окно счетчика, чувствительного к a- и мягкому b-излучению, должно быть достаточно тонким; для этого обычно используют слюду толщиной 3…10 мкм. Баллон счетчика, реагирующего на жесткое b- и g-излучение, имеет обычно форму цилиндра с толщиной стенки 0,05….0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового — из кварцевого стекла.

Зависимость скорости счета от напряжения питания в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые a- частицы. Фотонное излучение — ультрафиолетовое, рентгеновское, g-излучение — счетчики Гейгера воспринимают опосредованно — через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Каждая фиксируемая счетчиком частица образует в его выходной цепи короткий импульс. Число импульсов, появляющихся в единицу времени, — скорость счета счетчика Гейгера — зависит от уровня ионизирующей радиации и напряжения на его электродах. Стандартный график зависимости скорости счета от напряжения питания Uпит показан на рисунке выше. Здесь Uнс — напряжение начала счета; Uнг и Uвг — нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжение Uр обычно избирают в середине этого участка. Ему соответствует Nр — скорость счета в этом режиме.

Зависимость скорости счета от степени радиационного облучения счетчика — основная его характеристика. График этой зависимости имеет почти линейный характер и поэтому зачастую радиационную чувствительность счетчика показывают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета — имп/с — к уровню радиации — мкР/с).

В тех случаях, когда она не указана, определять о радиационной чувствительности счетчика приходится по другому его тоже крайне важному параметру — собственному фону. Так называют скорость счета, фактором которой являются две составляющие: внешняя — естественный радиационный фон, и внутренняя — излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода.

Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

Еще одной существенной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. В какой мере эта зависимость существенна, представляет график на рисунке. «Ход с жесткостью» будет сказываться, очевидно, на точность осуществляемых измерений.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы — по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием a-частиц, электронов, g-квантов, ничем не отличаются. Сами частицы, их энергии полностью исчезают в порождаемых ими лавинах-близнецах.

В таблице приведены сведения о самогасящихся галогеновых счетчиках Гейгера отечественного производства, наиболее подходящих для бытовых приборов радиационного контроля.

1 2 3 4 5 6 7
СБМ19 400 100 2 310* 50 19х195 1
СБМ20 400 100 1 78* 50 11х108 1
СБТ9 380 80 0,17 40* 40 12х74 2
СБТ10А 390 80 2,2 333* 5 (83х67х37) 2
СБТ11 390 80 0,7 50* 10 (55х29х23,5) 3
СИ8Б 390 80 2 350-500 20 82х31 2
СИ14Б 400 200 2 300 30 84х26 2
СИ22Г 390 100 1,3 540* 50 19х220 4
СИ23БГ 400 100 2 200-400* 19х195 1
  • 1 — рабочее напряжение, В;
  • 2 — плато — область малой зависимости скорости счета от напряжения питания, В;
  • 3 — собственный фон счетчика, имп/с, не более;
  • 4 — радиационная чувствительность счетчика, имп/мкР (* — по кобальту-60);
  • 5 — амплитуда выходного импульса, В, не менее;
  • 6 — габариты, мм — диаметр х длина (длина х ширина х высота);
  • 7.1 — жесткое b — и g — излучение;
  • 7.2 — то же и мягкое b — излучение;
  • 7.3 — то же и a — излучение;
  • 7.4 — g — излучение.