Описание устройства и принципа работы элеваторного теплового узла. Система отопления в многоквартирном доме: схема подключения и особенности

1.
2.
3.
4.
5.
6.
7.

На территории России обычно используется система центрального отопления многоквартирного дома, теплоноситель в которую поступает от городской котельной или ТЭЦ. При этом водяные контуры обустраивают по разным схемам, поскольку они бывают однотрубными и двухтрубными. Обычно потребителей тепла мало интересуют подобные нюансы, но при необходимости произвести ремонт квартиры и поменять старые батареи на новые современные отопительные радиаторы в подобных тонкостях владельцам жилой недвижимости желательно разбираться.

Индивидуальное отопление в жилых домах

Помимо центрального можно встретить автономное отопление квартиры в многоквартирном доме, обычно такая подача тепла встречается редко и в последние годы устанавливается в новостройках. Также местные системы теплоснабжения используют в частном жилом секторе. При котельную принято располагать или в самом здании в отдельном помещении или поблизости от дома, поскольку требуется регулировать .

Кроме этого в многоквартирных домах используют зависимые отопительные системы. В таком случае теплоноситель транспортируют в квартирные батареи без дополнительного распределения прямо с ТЭЦ. При этом температура воды находится вне зависимости от того, подается она через распределительный пункт или непосредственно потребителям.

Виды систем отопления многоквартирного дома бывают открытыми или закрытыми (детальнее: " ").

В последнем варианте теплоноситель с ТЭЦ или центральной котельной после попадания в распределительный пункт подается раздельно на отопительные радиаторы и на горячее водоснабжение. В открытых системах подобное разделение конструкцией не предусмотрено и подогретая вода для нужд жильцов поставляется с магистральной трубы, поэтому потребители вне отопительного сезона остаются без горячего водоснабжения, что вызывает немало нареканий в адрес коммунальных служб. Читайте также: " ".

Однотрубная отопительная система

Однотрубное теплоснабжение многоквартирного дома имеет массу недостатков, главным среди которых являются значительные потери тепла в процессе транспортировки горячей воды. В данном контуре теплоноситель подают снизу вверх, после чего он попадает в батареи, отдает тепло и возвращается назад в ту же самую трубу. К конечным потребителям, проживающим на верхних этажах, прежде горячая вода доходит в еле теплом состоянии.

Бывают случаи, когда однотрубную систему еще дополнительно упрощают, стараясь увеличить температуру теплоносителя в радиаторах. Для этого батарею врезают напрямую в трубу. В итоге, кажется, что радиатор является ее продолжением. Но от подобного подключения больше тепла получают только первые пользователи системы, а к последним потребителям вода доходит практически холодной (прочитайте также: " "). Кроме этого однотрубное теплоснабжение многоквартирного дома делает невозможной регулировку радиаторов – после уменьшения подачи теплоносителя в отдельной батарее также снижается водоток по всей длине трубы.

Еще одним недостатком такого теплоснабжения является невозможность замены радиатора в отопительный сезон без слива воды со всей системы. В подобных случаях необходима установка перемычек, благодаря чему появляется возможность отключить батарею, а теплоноситель направить по ним.

Не имеет значения, каким образом подключена батарея – к трубе стояка или лежака, теплоноситель имеет постоянную температуру на всем пути его транспортировки по трубам подачи.

Одним из важных преимуществ двухтрубных водяных контуров считается регулировка системы отопления многоквартирного дома на уровне каждой отдельной батареи путем установки на ней кранов с термостатом (прочитайте также: " "). В результате в квартире обеспечивается автоматическое поддержание нужного температурного режима. В двухтрубном контуре доступно использование радиаторов отопления как с подключением нижним, так и с боковым. Также можно применять разное движение теплоносителя - тупиковое и попутное.

Горячее водоснабжение в системах отопления

ГВС в многоэтажных домах обычно является централизованным, при этом вода нагревается в котельных. Подключают горячее водоснабжение от контуров отопления, причем и от однотрубных, и от двухтрубных. Температура в кране с горячей водой по утрам бывает теплой или холодной, что зависит от количества магистральных труб. Если имеется однотрубное теплоснабжение многоквартирного дома высотой в 5 этажей, то при открытии горячего крана сначала в течение полминуты из него пойдет холодная вода.

Причина кроется в том, что ночью редко кто из жильцов включает кран с горячим водоснабжением, и теплоноситель в трубах остывает. В результате наблюдается перерасход ненужной остывшей воды, поскольку она сливается напрямую в канализацию.

В отличие от однотрубной системы в двухтрубном варианте циркуляция горячей воды происходит непрерывно, поэтому вышеописанной проблемы с ГВС там не возникает. Правда, в некоторых домах через систему горячего водоснабжения закольцовывают стояк с трубами – полотенцесушителями, которые даже в летнюю жару горячие.

Многих потребители интересует проблема с ГВС после того, как завершился отопительный сезон. Иногда горячая вода пропадает на длительное время. Дело в том, что коммунальные службы обязаны соблюдать правила отопления многоквартирных домов, согласно которым необходимо производить постотопительные испытания систем теплоснабжения (прочитайте также: " "). Такая работа не выполняется быстро, особенно если обнаружатся повреждения, которые нужно устранить.

Особенности подачи тепла в многоквартирном доме, детали на видео:

Радиаторы для систем отопления многоэтажек

Привычными для многих жильцов многоэтажных домов являются чугунные радиаторы, которые ранее использовались не один десяток лет. При необходимости заменить такую отопительную батарею ее демонтируют и устанавливают аналогичную, которую требует система отопления в многоквартирном доме. Такие радиаторы для централизованных отопительных систем считаются лучшим решением, поскольку они без проблем выдерживают достаточно высокое давление. В паспорте к чугунной батарее указываются две цифры: первая из них говорит о рабочем давлении, а вторая обозначает испытательную (опрессовочную) нагрузку. Обычно это значения - 6/15 или 8/15.

Чем выше жилой дом, тем больше величина рабочего давления. В девятиэтажных зданиях оно достигает 6-ти атмосфер, таким образом, чугунные радиаторы для них подходят. Но когда это 22-этажный дом, то для рабочего функционирования централизованных систем отопления потребуется 15 атмосфер. В таком случае нужны стальные или биметаллические отопительные приборы.

Специалисты не рекомендуют использовать при централизованном отоплении алюминиевые радиаторы - они не способны выдержать рабочего состояния водяного контура. Также профессионалы советуют владельцам недвижимости при проведении капитального ремонта в квартирах в случае замены батарей менять трубы развода теплоносителей на ½ или ¾ дюйма. Обычно они находятся в плохом состоянии и вместо них желательно ставить изделия экопласт.

У некоторых видов радиаторов (стальных и биметаллических) водотоки уже, чем у чугунных изделий, поэтому они забиваются и в дальнейшем теряют мощность. Поэтому в месте подачи теплоносителя в батарею следует установить фильтр, который обычно монтируют перед водомером.

Отопительная система считается ключевой составляющей комфортного обитания человека в квартире или частном доме. При этом в зависимости от категории жилплощади используют тот или иной тип отопления. В частных домовладениях чаще всего используют автономные устройства. В многоквартирных строениях монтируют централизованную теплосеть, в которой в большинстве случаев используется элеваторный узел.

О существовании элеваторного узла в тепловой системе не догадываются даже многие сантехники, занимающиеся обслуживанием многоквартирных домов, не говоря уже об его устройстве и предназначении. Поэтому для ликвидации пробела в познаниях отопительной сферы нужно разбираться в том, что такое элеватор.

Тепловая схема отопления с элеваторным узлом

Под элеваторным узлом отопительной системы подразумевается специальная конструкция, выполняющая функции инжектора или струйного насоса . Основной задачей схемы с таким устройством является повышение давления внутри системы отопления. То есть улучшение циркуляции жидкости по трубам и радиаторам за счёт увеличения объёма теплоносителя.

Повышение давления в схеме теплового узла основано на стандартных физических законах. При этом если в отопительной системе обнаружен элеваторный узел, то такое отопление имеет подключение к центральной магистрали, по которой под давлением подаётся нагретый теплоноситель из общей котельной.

При сильных морозах температурные показатели внутри основной магистрали подачи тепла могут достигать +150° C . Но это невозможно физически, так как при такой температуре вода превращается в пар. Однако превращение жидкости из одного состояния в другое под воздействием высоких температур, возможно в открытых ёмкостях без какого-либо давления. Но в отопительных трубах теплоноситель циркулирует под давлением, нагнетаемым с помощью циркуляционных насосов, что не позволяет ему превращаться в пар.

Наверняка каждому понятно, что температурные показатели свыше 100° C считаются слишком высокими и подавать такую воду в жилое помещение нельзя по ряду определённых причин.

Поэтому перед подачей теплоносителя непосредственно в квартиру его необходимо остудить . Именно для этого и был изобретён элеватор. На сегодняшний день элеваторный узел в схеме тепловой системы является её неотъемлемой частью. Это было обусловлено его высокой устойчивостью функционирования при любых температурных изменениях в тепловой сети.

Конструктивные особенности элеватора

В данное оборудование входят следующие конструктивные элементы: элеватор струйного типа, разжижающая камера и специальное сопло . Но помимо самого элеваторного узла нужно выполнить его обвязку суть, которой заключается в монтаже запорной арматуры, манометра давления и термометра.

На сегодняшний день популярностью пользуются устройства, с электрическим приводом регулировки сопла, благодаря чему появляется возможность автоматического изменения расхода теплоносителя в системе отопления многоквартирных домов.

Принцип работы узла элеватора основан на перемешивании горячего и остывшего теплоносителей. В элеваторной камере перегретая жидкость, протекающая по основной магистрали, смешивается с уже остывшим теплоносителем, который возвращается из радиаторов. Проще говоря, вода из обратного контура смешивается с перегретым теплоносителем . При этом элеватором выполняется сразу несколько функций:

Положительной стороной элеваторного узла системы отопления даже учитывая простоту конструкции, является его высокая эффективность. Также к положительным качествам такого элемента можно зачислить сравнительно невысокую стоимость прибора. Плюс ко всему ему не нужно подключение в сеть переменного тока. Естественно, у элеватора есть и недостатки:

  • продуктивная работа элеваторного узла может быть гарантированна только при точном расчёте каждой его составляющей;
  • перепад давления между основной и обратной магистралью не должен превышать 2 Бар;
  • отсутствие регулировки температурного режима на выходе.

Такое устройство получило широкое распространение, в тепломагистралях многоквартирных строений благодаря своей эффективности работы при резких перепадах тепловых и гидравлических режимов в отопительной системе.

Распространённые поломки элеваторного узла

Основные неисправности элеватора отопительной системы могут быть вызваны выходом из строя самого прибора из-за засорения или увеличения внутреннего диаметра сопла. Также причиной поломки может быть засорение грязевика , поломка запорной арматуры и сбой настройки регулятора.

Определить поломку элеваторного узла системы отопления можно по перепаду температурного режима до и после прибора. При обнаружении сильного перепада можно констатировать поломку элеватора из-за засорения или увеличения сопла в диаметре. Но вне зависимости от поломки диагностика проводится сертифицированными специалистами. При засорении элеваторного узла выполняется его прочистка.

Если увеличился первоначальный диаметр из-за коррозии, то произойдёт полная разбалансировка всей отопительной системы. При этом радиаторы в помещениях на верхнем этаже не будут получать тепловую энергию в полном объёме, а батареи в нижних квартирах будут сильно перегреваться. Для устранения проблемы выполняется замена сопла на новый аналог с необходимым диаметром.

Выявить засорение грязевиков в элеваторном узле отопления можно благодаря изменению показаний датчиков давления, расположенных непосредственно до и после устройства. Для удаления загрязнений в тепловой системе выполняется их сброс с помощью крана, расположенного в нижней части грязевика. Если такие действия не дают положительных результатов, то выполняется демонтаж и механическая чистка прибора.

Альтернативный вариант тепловой схемы

Благодаря новым технологиям, которые нашли своё применение и в схеме отопления многоквартирных зданий появилась возможность замены элеватора более совершенным устройством. Автоматизированная система управления отоплением – полноценная альтернатива стандартному элеваторному узлу. Но стоимость такого устройства намного выше, хотя его использование более экономично.

Основным предназначением автоматизированного узла является управление температурным режимом и расходом теплоносителя внутри отопительной системы в зависимости от температуры за её пределами. Для работы такого узла обязательно наличие источника электроэнергии достаточно большой мощности. Но, несмотря на все инновации в сфере отопительных технологий элеваторный узел по-прежнему пользуется популярностях в коммунальных организациях.

На сегодняшний день популярностью пользуются элеваторы в системе отопления с электрическим приводом регулировки . Помимо этого появляется возможность контроля расхода теплоносителя без вмешательства со стороны человека. Из-за того, что такое оборудование обладает неопровержимыми преимуществами, нет никаких предпосылок, что в ближайшее время коммунальные предприятия будут производить его замену.

Обеспечение жилых домов и общественных зданий теплом – одна из главнейших задач коммунальных служб городов и поселков. Современные системы теплоснабжения – эта сложные комплексы, включавшие поставщиков тепла (ТЭЦ или котельные), разветвлённую сеть магистральных трубопроводов , специальные распределительные теплопункты , от которых идут ответвления к конечным потребителям.

Однако, подающийся по трубам к зданиям теплоноситель не напрямую попадает во внутридомовую сеть и конечные точки теплообмена – радиаторы отопления. В любом доме имеется собственный тепловой узел, в котором производится соответствующая регулировка уровня давления и температуры воды. Здесь установлены специальные устройства, выполняющие эту задачу. В последнее время все чаще устанавливается современное электронное оборудование, которое позволяет в автоматическом режиме контролировать необходимые параметры и вносить соответствующие коррективы. Стоимость подобных комплексов – весьма высока, они напрямую зависят от стабильности электропитания, поэтому нередко эксплуатирующими жилой фонд организациямиотдается предпочтение старой проверенной схеме локальной регулировки температуры теплоносителя на входе в домовую сеть. И основным элементом подобной схемы является элеваторный узел системы отопления.

Цель настоящей статьи – дать понятие об устройстве и принципе работы самого элеватора, о его месте в системе и выполняемых им функциях. Кроме того, заинтересованные читатели получат урок по самостоятельному расчету этого узла.

Общие краткие сведения о системах теплоснабжения

Чтобы правильно понять важность элеваторного узла, наверное, необходимо для начала кратко рассмотреть, как же работают центральные системы теплоснабжения.

Источником тепловой энергии являются ТЭЦ или котельные, в которых осуществляется разогрев теплоносителя до нужной температуры за счёт использования того или иного вида топлива (уголь, нефтепродукты, природный газ и т.п .) Оттуда теплоноситель прокачивается по трубам к точкам потребления.

ТЭЦ или крупная котельная рассчитана на обеспечение теплом определенного района, порой – с очень немалой территорией. Системы трубопроводов получаются весьма протяжёнными и разветвленными . Как минимизировать потери тепла и равномерно распределить его по по требителям, так, чтобы, например, наиболее удаленные от ТЭЦ здания не испытывали недостаточности в нем ? Это достигается тщательной термоизоляцией тепловых магистралей и поддержанием в них определенного теплового режима.

На практике используется несколько теоретически рассчитанных и практически проверенных температурных режимов функционирования котельных, которые обеспечивают и передачу тепла на значительные расстояния без существенных потерь, и максимальную эффективность, и экономичность работы котельного оборудования. Так, к примеру, применяются режимы 150/70, 130/70, 95/70 (температура воды в магистрали подачи / температура в «обратке »). Выбор конкретного режима зависит от климатического пояса региона и от конкретного уровня текущей зимней температуры воздуха.

1 – Котельная или ТЭЦ.

2 – Потребители тепловой энергии.

3 – Магистраль подачи разогретого теплоносителя.

4 – Магистраль «обратки ».

5 и 6 – Ответвления от магистралей к зданиям – потребителям.

7 – внутридомовые тепловые распределительные узлы.

От магистралей подачи и «обратки » идут ответвления в каждое здание, подключенное к данной сети. Но вот здесь сразу возникают вопросы.

  • Во-первых, разным объектам требуется различное количество тепла – не сравнить, к примеру, огромную жилую высотку и небольшое малоэтажное здание.
  • Во-вторых, температура воды в магистрали не соответствует допустимым нормам для подачи непосредственно на теплообменные приборы. Как видно из приведенных режимов, температура очень часто даже превышает точку кипения, и вода поддерживается в жидком агрегатном состоянии только лишь за счет высокого давления и герметичности системы.

Использование столь критичных температур в отапливаемых помещениях – недопустимо. И дело не только в избыточности поступления тепловой энергии – это чрезвычайно опасно. Любое прикосновение к разогретым до такого уровня батареям вызовет сильный ожог тканей, а в случае даже небольшой разгерметизации теплоноситель мгновенно превращается в горячий пар, что может повлечь очень серьезные последствия.

Правильный выбор радиаторов отопления – чрезвычайно важен!

Не все радиаторы отопления одинаковы. Дело не только и не столько в материале изготовления и внешнем виде. Они могут значительно различаться своими эксплуатационными характеристиками, адаптацией к той или иной системе отопления.

Как правильно подойти к

Таким образом, на локальном тепловом узле дома необходимо снизить температуру и давление до расчетных эксплуатационных уровней, обеспечив при этом требуемый отбор тепла, достаточный для нужд отопления конкретного здания. Эту роль выполняет специальное теплотехническое оборудование. Как уже говорилось, это могут быть современные автоматизированные комплексы, но очень часто отдается предпочтение проверенной схеме элеваторного узла.

Если заглянуть на тепловой распределительный пункт зд ания (чаще всего они располагаются в подвале, в точке входа магистральных тепловых сетей), то можно увидеть узел, в котором явно видна перемычка между трубами подачи и «обратки ». Именно здесь и стоит сам элеватор, об устройстве и принципе работы будет рассказано ниже.

Как устроен и работает элеватор отопления

Внешне сам элеватор топления представляет собой чугунную или стальную конструкцию, снабженную тремя фланцами для врезки в систему.

Посмотрим на его строение внутри.

Перегретая вода из тепловой магистрали попадает во входной патрубок элеватора (поз. 1). Перемещаясь под давлением вперед , она проходит через узкое сопло (поз. 2). Резкое повышение скорости потока на выходе из сопла приводит к эффекту инжекции - в приемной камере (поз. 3) создается зона разряжения. В эту область пониженного давления по законам термодинамики и гидравлики буквально «засасывается» вода из патрубка (поз. 4), подключенного к трубе «обратки ». В результате в смесительной горловине элеватора (поз. 5) происходит перемешивание горячего и охлажденного потоков, вода получает необходимую для внутренней сети температуру, снижается давление до безопасного для теплообменных приборов уровня, а затем теплоноситель через диффузор (поз. 6) попадает в систему внутренней разводки.

Помимо понижения температуры, инжектор выполняет роль своеобразного насоса – он создае т т ребуемый напор воды, который необходим для обеспечения ее циркуляции во внутридомовой разводке, с преодолением гидравлического сопротивления системы.

Как видно, система чрезвычайно проста, но очень эффективна, что и обуславливает ее широкое применение даже в условиях конкуренции с современным высокотехнологичным оборудованием.

Безусловно, элеватор нуждается в определенной обвязке. Примерная схема элеваторного узла приведена на схеме:

Разогретая вода из тепловой магистрали поступает по трубе подачи (поз. 1), и возвращается в нее по трубе обратки (поз. 2). От магистральных труб внутридомовая система может отключаться с помощью задвижек (поз. 3). Вся сборка отдельных деталей и устройств осуществляется с применением фланцевых соединений (поз. 4 ).

Регулировочное оборудование весьма чувствительно к чистоте теплоносителя, поэтому на входе и выходе из системы монтируются фильтры грязевики (поз. 5), прямого или «косого» типа. В них оседают т вердые нерастворимые включения и грязь, попавшая в полость труб. Периодически проводится очистка грязевиков от собранных осадков.

Фильтры-«грязевики», прямого (снизу) и «косого» типа

На определенных участках узла установлены контрольно-измерительные приборы. Это манометры (поз. 6), позволяющие контролировать уровень давления жидкости в трубах. Если на входе давление может достигать 12 атмосфер, то уже на выходе из элеваторного узла оно значительно ниже, и зависит от этажности здания и количества точек теплообмена в нем .

Обязательно стоят термодатчики – термометры (поз. 7), контролирующие уровень температуры теплоносителя: на входе их централи – t ц , входе во внутридомовую систему – t с , на «обратках » системы и централи – t ос и t оц .

Далее, установлен сам элеватор (поз. 8). Правила его монтажа требуют обязательного наличия прямого участка трубопровода не менее 250 мм. Одним, входным патрубком он через фланец соединен к подающей трубе из централи, противоположным – к трубе внутридомовой разводки (поз. 11). Нижний патрубок с фланцем подключен через перемычку (поз. 9) к трубе «отбратки » (поз. 12).

Для проведения профилактических или аварийно-ремонтных работ предусматриваются задвижки (поз. 10), полностью отключающие элеваторный узел от внутридомовой сети. На схеме не показаны, но на практике обязательно присутствуют специальные элементы для дренирования – слива воды из внутридомовой системы при возникновении такой необходимости.

Безусловно, схема дана в очень упрощенном виде, но она в полной мере отражает базовое устройство элеваторного узла. Широкими стрелками показаны направления потоков теплоносителя с разными уровнями температур.

Бесспорными преимуществами использования элеваторного узла для регулировки температуры и давления теплоносителя являются:

  • Простота конструкции при безотказности в эксплуатации.
  • Невысокая стоимость комплектующих и их монтажа.
  • Полная энергонезависимость подобного оборудования.
  • Использование элеваторных узлов и приборов учета тепла позволяют достичь экономии в расходе потребленного теплоносителя до 30%.

Есть, конечно, и весьма значимые недостатки:

  • Каждой системе требуется индивидуальный расчет для подбора требуемого элеватора.
  • Необходимость обязательного перепада давления на входе и выходе.
  • Невозможность точных плавных регулировок при текущем изменении параметров системы.

Последний недостаток – достаточно условен, так как на практике часто применяются элеваторы, в которых предусмотрена возможность изменения его рабочих характеристик.

Для этого в приемной камере с соплом (поз. 1) установлена специальная игла – конусовидный стержень (поз. 2), который уменьшает сечение сопла. Этот стержень в блоке кинематики (поз . 3) через реечную зубчатую передачу (поз . 4 5) связан с регулировочным валом (поз . 6). Вращение вала вызывает перемещение конуса в полости сопла, увеличивая или уменьшая просвет для прохода жидкости. Соответственно, меняются и рабочие параметры всего элеваторного узла.

В зависимости от уровня автоматизации системы, могут применяться различные типы регулируемых элеваторов.

Так, передача вращения может осуществляться вручную – ответственный специалист отслеживает показания контрольно-измерительных приборов и вносит коррективы в работу системы, ориентируясь на на несенную около маховика (рукоятки) шкалу.

Другой вариант – когда элеваторный узел завязан на электронную систему контроля и управления. Показания снимаются в автоматическом режиме, блок управления вырабатывают сигналы для передачи их на сервоприводы, через которых вращение передается на кинематический механизм регулируемого элеватора.

Что нужно знать о теплоносителях?

В системах отопления, особенно — в автономных, в качестве теплоносителя может использоваться не только вода.

Какими качествами должен обладать , и как правильно его выбрать — в специальной публикации портала.

Расчет и подбор элеватора системы отопления

Как уже говорилось, для каждого здания требуется определенное количеств тепловой энергии. Это означает что необходим определенный расчёт элеватора, исходя из заданных условий эксплуатации системы.

К исходным данным можно отнести:

  1. Значения температуры:

— на входе их тепловой централи;

— в «обратке» тепловой централи;

— рабочее значение для внутридомовой системы отопления;

— в обратной трубе системы.

  1. Общее количество тепла, потребное для отопления конкретного дома.
  2. Параметры, характеризующие особенности внутридомовой разводки отопления.

Порядок расчета элеватора установлен специальным документом – «Сводом правил по проектированию Минстроя РФ», СП 41-101-95, касающимся именно проектирования тепловых пунктов. В этом нормативном руководстве приведены формулы расчета , но они – достаточно «тяжеловесные», и приводить их в статье – нет особой необходимости.

Те читатели, которых мало интересуют вопросы расчета , могут смело пропустить этот раздел статьи. А тем, кто желает самостоятельно рассчитать элеваторный узел, можно порекомендовать потратить 10 ÷ 15 минут времени, чтобы создать собственный калькулятор, основанный на формулах СП, позволяющий проводить точные подсчеты буквально за считаные секунды.

Создание калькулятора для расчета

Для работы потребуется обычное приложение Excel, которое есть, наверное, у каждого пользователя – оно входит в базовый пакет программ MicrosoftOffice. Составление калькулятора не представит особого труда даже для тех пользователей, которые никогда не сталкивались с вопросами элементарного программирования.

Рассмотрим пошагово:

(если часть текста в таблице выходит за рамки, то внизу есть «движок» для горизонтальной прокрутки)

Иллюстрация Краткое описание выполняемой операции
Откройте новый файл (книгу) в приложении Excel пакета Microsoft Office.
В ячейке А1 наберите текст «Калькулятор для расчета элеватора системы отопления».
Ниже, в ячейке А2 набираем «Исходные данные».
Надписи можно "поднять", изменяя жирность, размер или цвет шрифта.
Ниже расположатся строки с ячейками для ввода исходных данных, на основании которых и будет проводиться расчет элеватора.
Заполняем текстом ячейки с А3 по А7 :
А3 – «Температура теплоносителя, градусы С:»
А4 – «в подающей трубе тепловой централи»
А5 – «в обратке тепловой централи»
А6 – «необходимая для внутридомовой системы отопления»
А7 – «в обратке системы отопления»
Для наглядности можно пропустить строку, а ниже, в ячейку А9 вносим текст «Необходимое количество тепла для системы отопления, кВт»
Пропускаем еще строку, и в ячейку А11 впечатываем «Коэффициент сопротивления системы отопления дома, м».
Чтобы текст из столбца А не находил на столбец В , куда будут в дальнейшем вноситься данные, столбец А можно раздвинуть на необходимую ширину (показано стрелкой).
Область ввода данных, от А2-В2 до А11-В11 можно выделить и сделать заливку цветом. Так она будет отличаться от другой области, где будут выдаваться результаты вычислений.
Пропускаем еще одну строку и вводим в ячейку А13 «Результаты расчета:»
Можно выделить текст другим цветом.
Далее, начинается самый ответственный этап. Помимо ввода текста в ячейки столбца А , в рядом стоящие ячейки столбца В вписываются формулы, в соответствии с которыми и будут проводиться расчеты.
Формулы следует переносить в точности, как это будет указано, безо всяких лишних пробелов.
Важно: формула вводится в русской раскладке клавиатуры, за исключением имен ячеек – они вводятся исключительно в латинской раскладке. Для того, чтобы не ошибиться с этим, в приведенных примерах формул имена ячеек будут выделены жирным шрифтом.
Итак, в ячейке А14 набираем текст «Температурный перепад тепловой централи, градусов С». в ячейку В14 вносим следующее выражение
=(B4 -B5 )
И осуществлять ввод, и контролировать его правильность удобнее в строке формул (зеленая стрелка).
Пусть вас не смущает то, что в ячейке В14 сразу появилось какое-то значение (в данном случае «0», синяя стрелка), просто программа сразу отрабатывает формулу, опираясь пока на пустые ячейки ввода.
Заполняем следующую строку.
В ячейке А15 – текст «Температурный перепад системы отопления, градусов С», а в ячейке В15 – формула
=(B6 -B7 )
Следующая строка. В ячейке А16 – текст: «Необходимая производительность системы отопления, куб.м/час».
Ячейка В16 должна содержать следующую формулу:
=(3600*B9 )/(4,19*970*B14 )
Появится сообщение об ошибке, «деление на ноль» - не обращаем внимания, это просто оттого, что не внесены исходные данные.
Идем ниже. В ячейке А17 – текст: «Коэффициент смешения элеватора».
Рядом, в ячейке В17 – формула:
=(B4 -B6 )/(B6 -B7 )
Далее, ячейка А18 – «Минимальный напор теплоносителя перед элеватором, м».
Формула в ячейке В18 :
=1,4*B11 *(СТЕПЕНЬ((1+B17 );2))
Не сбейтесь с количеством скобок – это важно
Следующая строка. В ячейке А19 текст: «Диаметр горловины элеватора, мм».
Формула в ячейке В18 следующая:
=8,5*СТЕПЕНЬ((СТЕПЕНЬ(B16 ;2)*СТЕПЕНЬ(1+B17 ;2))/B11 ;0,25)
И последняя строка расчётов.
В ячейке А20 вводится текст «Диаметр сопла элеватора, мм».
В ячейке В20 – формула:
=9,6*СТЕПЕНЬ(СТЕПЕНЬ(B16 ;2)/B18 ;0,25)
По сути, калькулятор готов. Можно только его несколько «модернизировать, чтобы он был удобнее в работе, и не было риска случайно удалить формулу.
Для начала, выделим область от А13-В13 до А20-В20 , и зальем ее другим цветом. Кнопка заливки показана стрелкой.
Теперь выделяем общую область с А2-В2 по А20-В20 .
В выпадающем меню «границы» (показано стрелкой) выбираем пункт «все границы» .
Наша таблица получает стройное обрамление линиями.
Теперь нужно сделать так, чтобы значения вручную можно было ввести только лишь в те ячейки, которые для этого предназначены (чтобы не стереть или не нарушить случайно формулы).
Выделяем диапазон ячеек от В4 до В11 (красные стрелки). Заходим в меню «формат» (зеленая стрелка) и выбираем пункт «формат ячеек» (синяя стрелка).
В открывшемся окне выбираем последнюю вкладку – «защита» и в окошке «защищаемая ячейка» убираем галочку.
Теперь вновь идем в меню «формат» , и выбираем в нем пункт «защитить лист» .
Появится небольшое окошко, в котором останется всего лишь нажать кнопку «ОК» . Предложение ввести пароль просто игнорируем – в нашем документе такая степень защиты не нужна.
Теперь можно быть уверенным, что никакого сбоя не будет – для изменения открыты только лишь ячейки в столбце В в области ввода значений.
При попытке внести хоть что-нибудь в любые другие ячейки появится окно с предупреждением о невозможности такой операции.
Калькулятор готов.
Осталось лишь сохранить файл. – и он всегда будет готов к проведению расчета.

Провести подсчет в созданном приложении – не составляет никакого труда. Достаточно лишь заполнить известными значениями область ввода – дальше программа все рассчитает в автоматическом режиме.

  • Температуру подачи и «обратки» в тепловой централи можно узнать в ближайшем к дому теплопункте (котельной).
  • Требуемая температура теплоносителя во внутридомовой системе в большей мере зависит от того, какие теплообменные приборы установлены в квартирах.
  • Температура в трубе «обратки» системы чаще всего принимается равной аналогичному показателю в централи.
  • Потребность дома в общем притоке тепловой энергии зависит от количества квартир, точек теплообмена (радиаторов), особенностей здания – степени его утепленности , объема помещений, количества общих теплопотерь и т.п . Обычно эти данные рассчитываются заблаговременно еще на стадии проектирования дома или при проведении реконструкции системы его отопления.
  • Коэффициент сопротивления внутреннего контура отопления дома рассчитывается по отдельным формулам, с учетом особенностей системы. Однако, не будет большой ошибкой взять и усредненные значения, приведенные в таблице ниже:
Типы многоквартирных жилых домов Значение коэффициента, м
Многоквартирные дома старой постройки, с контурами отопления из стальных труб, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 1
Дома, введенные в эксплуатацию или в которых проведен капитальный ремонт в период до 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах 3 ÷ 4
Дома, введенные в эксплуатацию либо после капитального ремонта в период после 2012 года, с установкой полипропиленовых труб на систему отопления, без регуляторов температуры и расхода теплоносителя на стояках и радиаторах. 2
То же самое, но с установленными приборами регулировки температуры и расхода теплоносителя на стояках и радиаторах 4 ÷ 6

Проведение расчетов и подбор нужной модели элеватора

Попробуем калькулятор в действии.

Допустим, что температура в подающей трубе тепловой централи – 135, а в обратной – 70 °С . Планируется поддерживать в системе отопления дома температуру в 85 ° С , на выходе – 70 °С . Для качественного обогрева всех помещений необходима тепловая мощность в 80 кВт. По таблице определено, что коэффициент сопротивления равен «1».

Подставляем эти значения в соответствующие строки калькулятора, и сразу же получаем необходимые результаты:

В итоге имеем данные для подбора нужной модели элеватора и условия для его корректной работы. Так, получена требуемая производительность системы – количество теплоносителя, прокачиваемого в единицу времени, минимальный напор водяного столба. И самые основные величины – это диаметры сопла элеватора и его горловины (смесительной камеры).

Диаметр сопла принято округлять до сотых долей миллиметра в меньшую сторону (в данном случае – 4,4 мм). Минимальное значение диаметра должно быть 3 мм – в противном случае сопло просто будет быстро забиваться.

Калькулятор позволяет и «поиграть» значениями, то есть посмотреть, как они будут изменяться при изменении исходных параметров. Например, если температура в теплоцентрали понижена, скажем, до 110 градусов, то это повлечет и другие параметры узла.

Как видно, диаметр сопла элеватора уже составляет 7,2 мм.

Это дает возможность выбора устройства с наиболее приемлемыми параметрами, с определенным диапазоном регулировок, или же комплекта сменных сопел для конкретной модели.

Имея рассчитанные данные, уже можно обратиться к таблицам предприятий-изготовителей подобного оборудования для выбора требуемого варианта исполнения.

Обычно в этих таблицах, помимо рассчитанных величин, приводятся и другие параметры изделия – его габариты, размеры фланцев, масса и пр .

Для примера – водоструйные стальные элеваторы серии 40с10бк :

Фланцы: 1 – на входе, 1— 1 – на врезке трубы из «обратки» , 1— 2 – на выходе.

2 – входной патрубок.

3 – съемное сопло.

4 – приемная камера.

5 – смесительная горловина.

7 – диффузор.

Основные параметры сведены в таблицу – для удобства выбора:

Номер
элеватора
Размеры, мм Масса,
кг
Примерный
расход воды
из сети,
т/ч
dc D D1 D2 l L1 L
1 3 15 110 125 125 90 110 425 9,1 0,5-1
2 4 20 110 125 125 90 110 425 9,5 1-2
3 5 25 125 160 160 135 155 626 16,0 1-3
4 5 30 125 160 160 135 155 626 15,0 3-5
5 5 35 125 160 160 135 155 626 14,5 5-10
6 10 47 160 180 180 180 175 720 25 10-15
7 10 59 160 180 180 180 175 720 34 15-25

При этом производитель допускает самостоятельную замену сопла с нужным диаметром в определенном диапазоне:

Модель элеватора, № Возможный диапазон смены сопла, Ø мм
№1 min 3 мм, max 6 мм
№2 min 4 мм, max 9 мм
№3 min 6 мм, max 10 мм
№4 min 7 мм, max 12 мм
№5 min 9 мм, max 14 мм
№6 min 10 мм, max 18 мм
№7 min 21 мм, max 25 мм

Подобрать требуемую модель, имея на руках результаты расчета – не представит особого труда.

При монтаже элеватора или при проведении профилактических работ следует обязательно учитывать, что от правильности установки и целостности деталей напрямую зависит эффективность работы узла.

Так, конус сопла (стакан) должен быть установлен строго соосно с камерой смешения (горловиной ). Сам стакан в посадочное гнездо элеватора должен входить свободно, чтобы была возможность его извлечения для ревизии или замены.

При проведении ревизий следует обращать особое внимание на состояние поверхностей отделов элеватора. Даже наличие фильтров не исключает абразивного воздействия жидкости, плюс к этому никуда не деться от эрозийных процессов и коррозии. Сам рабочий конус должен иметь отполированную внутреннюю поверхность, ровные, неизношенные края сопла. При необходимости производится его замена на новую деталь.

Несоблюдение таких требований влечет снижение КПД узла и падение давления, необходимого для циркуляции теплоносителя во внутридомовой разводке отопления. Кроме того, износ сопла, его загрязнение или слишком большой диаметр (существенно выше расчётного), приведут к появлению сильных гидравлических шумов, которые по трубам отопления будут передаваться в жилые помещения здания.

Конечно, система отопления дома с простейшим элеваторным узлом – далеко не образец совершенства. Она весьма тяжело поддается регулировке, которая требует разборки узла и замены инжекторного сопла. Поэтому оптимальным вариантом видится, все же, модернизация с установкой регулируемых элеваторов, позволяющих изменять параметры смешения теплоносителя в определенном диапазоне.

А как регулировать температуру в квартире?

Температура теплоносителя во внутридомовой сети может быть избыточна для отдельно взятой квартиры, например, если в ней используются «теплые полы». Значит, потребуется установка собственного оборудования, которое поможет поддерживать степень нагрева на нужном уровне.

Варианты, как – в специальной статье нашего портала.

И напоследок – видео с компьютерной визуализацией устройства и принципа действия элеватора отопления:

Видео: устройство и работа элеватора отопления

Приветствую всех, кто читает мой блог! Сегодня я хочу предложить вам еще одну статью, которая посвящена отоплению. В этой статье я расскажу вам о странном месте в подвале вашего дома, которое называется тепловой пункт (или тепловой узел). Статья имеет своей целью дать вам общее представление о том, что такое тепловой узел, как он работает и зачем нужен. Разбираться в этих вопросах начнем с самого фундаментального из них.

Зачем нужен тепловой узел?

Тепловой пункт находится на вводе теплотрассы в дом. Главное его назначение — изменение параметров теплоносителя. Если говорить понятнее, то тепловой узел снижает температуру и давление теплоносителя перед тем как он попадет в ваш радиатор или конвектор. Нужно это не только для того, чтобы вы не обожглись от прикосновения к прибору отопления, но и для продления срока службы всего оборудования системы отопления. Особенно это важно, если внутри дома отопление разведено при помощи полипропиленовых или металлопластиковых труб. Существуют регламентированные режимы работы тепловых узлов:

  • 150/70
  • 130/70
  • 110/70

Эти цифры показывают максимальную и минимальную температуру теплоносителя в теплотрассе.

Также, по современным требованием на каждом тепловом узле должен быть установлен прибор учета тепла. Теперь перейдем к устройству тепловых узлов.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика. Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел на основе элеватора.

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой. Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах. Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона. Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором. Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи». Принцип работы элеватора основан на создании разряжения на его выходе. В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел на основе теплообменника.

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома. Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации. При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление. Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.


Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов. В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя. Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться. Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник. Это дает такие же преимущества по части регулирования температуры и давления горячей воды. Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов. Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Итоги статьи.

Одной из ключевых частей теплотрассы является тепловой узел. Схема теплового узла, устройство и принцип действия могут показаться новичку чем-то непонятным, но обладая минимальными знаниями, можно полностью разобраться в этих тонкостях, что поможет в будущем обустроить высокоэффективную отопительную магистраль. В первую очередь следует рассмотреть базовые моменты.

    Показать всё

    Общая информация

    Тепловой пункт расположен у входа теплотрассы в помещение. Основная его задача заключается в изменении рабочих параметров жидкости-теплоносителя, а если быть точным - в снижении температуры и давления воды перед ее попаданием в радиатор или конвектор. Такой процесс необходим не только для повышения безопасности жильцов и предотвращения возможного обжигания при контакте с батареей, но и для увеличения эксплуатационных сроков всего оборудования. Функция незаменима в тех случаях, если в здании имеются полипропиленовые или металлопластиковые трубы.

    В соответствующей документации указаны регламентированные режимы работы подобных узлов. Они указывают на верхний и нижний порог температур, до которых может прогреваться теплоноситель. Также согласно современным стандартам на каждом узле должен присутствовать , определяющий текущие показатели жидкости, с которой работает теплоузел.

    Схема, принцип работы и устройство теплового оборудования могут зависеть от нескольких особенностей, включая проект, который создавался с учетом индивидуальных требований заказчиков. Среди существующих типов тепловых узлов, особым спросом пользуются модели на основе элеватора . Такая схема характеризуется особой простотой и доступностью, но с ее помощью нельзя менять температуру жидкости в трубах, что доставляет потребителю массу неудобств. Главная проблема - чрезмерный расход тепловых ресурсов при временных оттепелях во время отопления.

    В системе тепловых узлов на основе элеватора может присутствовать редуктор пониженного давления, который расположен непосредственно перед элеватором. Сам элеватор осуществляет подмешивание остывшей жидкости из обратной трубы к прогретому теплоносителю, достигшему подающего контура.

    Принцип действия узла базируется на создании разряжения в месте выхода, что существенно снижает давление воды и запускает процесс смешивания.

    Устройство системы и требования к монтажу

    Устройство теплового узла подразумевает массу составляющих, которые взаимозависимы и функционируют для одной общей цели.



    В числе основных элементов системы :

    1. 1. Запорная арматура.
    2. 2. Тепловой счетчик.
    3. 3. Грязевик.
    4. 4. Датчик расхода теплоносителя.
    5. 5. обратного трубопровода.
    6. 6. Дополнительное оборудование.

    В зависимости от индивидуальных особенностей объекта система может оснащаться дополнительными датчиками и другими узлами. Что касается монтажа, то он должен выполняться с учетом определенных правил и требований :

    1. 1. Установка схемы должна происходить непосредственно у границ раздела балансовой принадлежности.
    2. 2. Использовать теплоноситель из общей коммунальной системы для индивидуальных нужд категорически запрещено.
    3. 3. Для контроля среднечасовых и среднесуточных показателей необходимо учитывать рабочие свойства учетного оборудования.
    4. 4. Любые датчики и учетные устройства фиксируются на трубопроводе «обратки».

    Узел учёта тепловой энергии. На практике. Устройство многоквартирного дома.

    Модели на базе теплообменника

    Существует еще одна разновидность теплового узла частного дома - на основе теплообменника. В таком случае к устройству присоединен специальный теплообменник, который разделяет жидкость из теплотрассы от жидкости в помещении. Подобная функция необходима для дополнительной подготовки теплоносителя с помощью различных присадок и фильтрующих устройств. Схема расширяет возможности в регулировке давления и температурного режима теплоносителя внутри здания. Таким образом затраты на отопление постройки существенно снижаются.

    Для подмешивания воды с разной температурой необходимо использовать термостатические клапаны. Подобные системы нормально взаимодействуют с радиаторами из алюминия, но чтобы последние прослужили максимально долго, необходимо тщательно выбирать теплоноситель, отказываясь от низкокачественного сырья. Конечно же, уследить за качеством жидкости проблематично, поэтому лучше отказаться от этого материала, отдав предпочтение биметаллическим или чугунным радиаторам.

    Схема подключения ГВС подразумевает использование теплообменника. Такой метод обеспечивает массу плюсов, включая :

    1. 1. Возможность регулирования температуры воды.
    2. 2. Возможность изменения давления горячего теплоносителя.

    К сожалению, многие управляющие компании не следят за , а иногда даже занижают ее на несколько градусов. Среднестатистический потребитель практически не заметит такие изменения, но в масштабах целого дома - это экономия внушительных сумм денежных средств.

    Теплообменники и блочные индивидуальные тепловые пункты

    Элеваторные узлы

    В многоквартирных и многоэтажных помещениях, административных постройках и других объектах с большой площадью задействуются высокоэффективные ТЭЦ или мощные котельные. В частных коттеджах и небольших домах используются простые автономные системы, которые работают по понятному принципу.


    Однако даже с такими установками возникают определенные проблемы , из-за которых становится проблематично проводить настройку или изменение рабочих параметров. А в больших котельных или ТЭЦ схемы такого оборудования гораздо сложнее и крупнее. От центральной трубы расходится масса ответвлений к каждому потребителю. При этом в каждом из них присутствует разное давление, а объемы потребляемого тепла существенно отличаются. Протяженность магистрали бывает разной, поэтому систему нужно проектировать правильно, чтобы самая отдаленная точка получала нужный объем тепловой энергии.

    Разница давлений теплоносителя нужна для нормального продвижения теплоносителя по контуру, т. е. оно является естественной альтернативой для насосного оборудования. На этапе проектирования системы необходимо соблюдать установленную схему, иначе повысится риск разбалансировки при изменении объемов потребляемого тепла.

    Более того, сильная разветвленность оборудования не должна нарушать эффективность теплоснабжения. Для обеспечения стабильной работы ЦОС (централизованной отопительной системы) нужно оборудовать в каждом помещении персональный элеваторный узел или специальный автоматизированный блок управления.

    Конструкции по-особому удобны для всех многоквартирных домов. И если кто-то считает, что можно не использовать такой узел, заменяя его естественной подачей воды с чуть меньшей температурой, то это - глубокое заблуждение, т. к. при отсутствии элеваторного узла появится необходимость увеличить диаметр магистралей для подачи менее горячего теплоносителя. При наличии такой детали появится возможность добавлять в подающую жидкость определенное количество теплоносителя из обратного контура, который уже достаточно остыл.

    Тем не менее, есть мнение, что применение элеваторного узла - старый метод, ведь на рынке уже имеются более прогрессивные решения, а именно :

    1. 1. смеситель с 3-ходовым клапаном;
    2. 2. пластинчатый теплообменник.

    Что такое элеваторный узел в системе центрального отопления

    Основные неполадки

    К сожалению, даже такое незамысловатое устройство, как элеваторный узел, подвергается различным сбоям и неполадкам. Для определения неисправности необходимо проанализировать показания манометров в контрольных точках.

    Одной из ключевых причин повреждения элеваторного узла является большое скопление мусора в трубопроводах. Зачастую этим мусором является грязь и твердые частички в воде. При резком снижении давления в отопительной системе чуть дальше грязевика нужно провести очистку этого резервуара. Грязь сбрасывают с помощью спускных каналов, после чего обслуживают сетки и внутренние поверхности конструкции.

    При скачках давления необходимо проверить систему на наличие коррозийных процессов или мусора. Также проблему может вызывать разрушение сопла, в результате чего уровень давления станет слишком высоким.

    Еще в работе элеваторных узлов встречаются такие явления, при которых давление начинает расти невероятными темпами, а манометры до и после грязевика отображают одинаковое значение. Если это так, необходимо провести комплексную очистку грязевика обратного контура. Для этого следует открыть краны, очистить сетку и избавиться от всех загрязнений внутри.

    Если размеры сопла изменились из-за коррозийных процессов, возможно, произошло вертикальное разрегулирование отопительного контура. В таком случае нижние радиаторы будут прогреваться достаточно хорошо, а верхние останутся холодными. Для устранения неисправности нужно заменить сопло.

    Опытные инженеры и теплотехники рекомендуют задействовать один из трех режимов работы котельной установки. Такие рекомендации создавались с учетом теоретических данных и математических вычислений, а также были подтверждены многолетним практическим опытом. Каждый из выбранного режима гарантирует высокоэффективную передачу тепла с низким уровнем потерь. При этом на показатели КПД не влияет даже большая протяженность магистрали.


    Эти режимы отличаются друг от друга разным соотношением температуры на подающем контуре и обратном:

    1. 1. 150/70 градусов Цельсия.
    2. 2. 130/70 градусов Цельсия.
    3. 3. 95/70 градусов Цельсия.

    При выборе оптимального соотношения важно учитывать несколько факторов, включая региональные особенности и среднестатистическую величину зимней температуры воздуха. Если речь идет об отоплении частного дома, лучше отказаться от использования двух первых режимов, которые подразумевают прогрев теплоносителя до 150 и 130 градусов Цельсия. При таких температурах появляется вероятность получения опасных ожогов и других последствий от разгерметизации.

    Как известно, жидкость в трубопроводной магистрали разогрета до таких температур, которые превышают точку кипения. Однако она никогда не закипает, что обусловлено соответствующим давлением. При необходимости подобрать оптимальный режим для частной постройки, нужно снизить давление и температуру, для чего и используется элеваторный узел. Сам элемент представляет собой специальное теплотехническое оборудование, которое находится в распределительном пункте.

    Сферы применения и предназначение

    Разобравшись со схемой теплоузла отопления, можно переходить непосредственно к монтажным работам. Как известно, такие установки зачастую используются в многоквартирных помещениях, которые подключены к общей коммунальной отопительной системе.

    Тепловые узлы предназначаются для таких задач :

    1. 1. Проверки и изменения рабочих свойств теплоносителя и теплового потенциала.
    2. 2. Мониторинга текущего состояния систем отопления.
    3. 3. Мониторинга и записи основных показателей теплоносителя - текущей температуры, давления и объема.
    4. 4. Проведения денежных расчетов и составления оптимального плана расходов энергии.

    Обустраивая отопительную систему в помещении, нужно понимать, что центральное отопление требует определенных затрат. Если речь идет о многоквартирном здании, то все расходы разделяются на жильцов. Но иногда они бывают неоправданными из-за недобросовестного отношения управляющих компаний и неправильной установки деталей системы.

    И чтобы предотвратить существенный финансовый ущерб, важно заранее установить высокоэффективный тепловой узел частного дома, который будет автоматически регулировать любые изменения и подбирать оптимальное соотношение температуры теплоносителя. Только грамотная проверка оборудования и правильное обслуживание позволят обустроить эффективную систему отопления, которая прослужит долгие годы без сбоев.