Операции с жидкими веществами. Вытекание жидкости через отверстие в сосуде

СОЮЗ СОВЕТСКИХСОЦИАЛИСТИЧЕСКИРЕСПУБЛИК 8163 А 1 9) (11) 1)5 А 01 С 27/00 ОПИСАНИЕ ИЗОБРЕТЕНК АВТОРСКОМУ СВИДЕТЕЛЬСТВУ растениеводю для автомаго субстрата. ий содержит стратом, надМариотта с Водопровод апорный венГОСУДАРСТВЕННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР(56) Авторское свидетельство СССРМ 1586622, кл. А 01 6 31/02, 1989.(54) УСТРОЙСТВО ДЛЯ ПОЛИВА РАСТЕНИЙ(57) Изобретение относится кству, а именно к оборудованитического увлажнения корневоУстройство для полива растенвегетационный сосуд 1 с субкоторым расположен сосуд 2воздухопропускной трубкой 3.4 соединен с сосудом 2 через з тиль 5 и троиник 6, к которому также присоединена свернутая в кольцо поливная трубка 7, расположенная над вегетационным сосудом 1. При открывании вентиля 5 вода поступает в сосуд 2, вытесняя оттуда через трубку 3 воздух. После окончания заправки вода заполняет трубку 3 с. подсоединенными к ней водяным затвором 9 и датчиком-регулятором влажности, выполненным в виде воронки 8 с тонкопористым дном и помещенным в субстрат. После закрывания вентиля вода из сосуда 2 через поливную трубку орошает субстрат, при этом замещающий ее в сосуде 2 воздух поступает туда через пористое дно воронки и трубкудо тех пор, пока а не увлажнится субстрат и соответственно пористое дно. При подсыхании субстрата процесс его орошения повторяется автоматически. 1 з.п. ф-лы, 1 ил.1738163 45 50 Составитель С. ЧернобровкинРедактор В. Бугренкова Техред М.Моргентал Корректор О. Кундрик Заказ 13 5 Тираж ПодписноеВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР113035, Москва, Ж, Раушская наб., 4/5 Производственно-издательский комбинат "Патент", г, Ужгород, ул,Гагарина, 101 Изобретение относится к растениеводству, а именно к оборудованию для автоматического увлажнения корневого субстрата.Цель изобретения - поддержание постоянного уровня влажности корневого субстрата,На чертеже представлена схема устройства для полива растений,Устройство содержит вегетационный сосуд 1 с субстратом (почва, песок, вермикулит и т.п.) и растением, сосуд 2 Мариотта с воздухопропускной трубкой 3, водопровод 4, который соединен с сосудом 2 через запорный вентиль 5 и тройник 6, на свободный конец которого надета поливная трубка 7, свернутая в кольцо, другой конец которой расположен над сосудом 1. Воздухопропускная трубка 3 соединена с капиллярометрическим датчиком-регулятором, состоящим из воронки 8 с тонкопористым дном и 0-образным водяным затвором-манометром 9 с расширителем 10, а другой конец опущен в буферную емкость 11 с микроотверстием 12,Устройство работает следующим образом,При открывании вентиля 5 вода из водопровода 4 под давлением поступает в сосуд 2 через тройник 6, а воздух вытесняется через буферную емкость 11, трубку 3, воронку 8 и затвор 9. По окончании заправки вода попадает через трубку 3 в затвор 9, заполнив его, После того как вентиль 5 закроют, вода из сосуда 2 начнет истекать через поливную трубку 7 в сосуд 1, смачивая субстрат, При этом давление в сосуде 2 и затворе-манометре 9 уменьшится, и, если поры почвы заполнены водой и не пропускают воздух, истечение прекратится, Если почвенный субстрат в сосуде 1 недостаточно увлажнен, воздух через поры почвы поступит в воронку 8, а затем через трубку 3 в сосуд 2. При этом будет происходить полив 5 почвы до заполнения ее капилляров водойи прекращения поступления воздуха через дно воронки 8 в сосуд 2. Подбором порозности дна воронки 8 можно регулировать начало и конец полива, а следовательно, и 10 заданную влажность, При повторной заправке сосуда 2, воздух, выходя из него через воронку 8, может аэрировать почву,Формула изобретения 15 1. Устройство для полива растений, содержащее вегетационный сосуд с субстратом, над которым расположен сосуд Мариотта с воздухопропускной трубкой, водопровод, соединенный с сосудом Мариот та через запорный вентиль и тройник,причем на свободный конец последнего надета свернутая в кольцо поливная трубка, о т л и ч а ю щ е е с я тем, что, с целью поддержания постоянного уровня влажно сти корневого субстрата, оно снабженодатчиком-регулятором влажности в виде размещенной в субстрате и соединенной с наружным концом воздухопропускной трубки закрытой емкости с пористой стен кой.2. Устройство по и, 1, о т л и ч а ю щ ее с я тем, что, с целью упрощения процесса заправки сосуда Мариотта поливной жидкостью, воздухопропускная трубка в сосуде 35 Мариотта установлена в буферной емкости,открытой сверху и снабженной в нижней части микроотверстием, а наружный конец воздухопропускной трубки с датчиком-регулятором влажности через тройник присое динен к О-образному водяному затвору.

Заявка

4823733, 14.05.1990

МОЛДАВСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОВОЩЕВОДСТВА

ВЫРОДОВ ДМИТРИЙ АНДРЕЕВИЧ, ВЫРОДОВА ЕВГЕНИЯ ДМИТРИЕВНА

МПК / Метки

Код ссылки

Устройство для полива растений

Похожие патенты

На общем валу в будке машиниста компрессора 5, центробежного насоса 7 и вентилятора 8, приводимых во вращение турбиною 6, расположенной на том же валу. Отдельные части устройства сообщаются между собою посредством ряда трубопроводов,Отработанный пар, выпускаемый при обычном устройстве паровоза через конус в атмоеферу в пред лагаемом приспособлении, напра вляется из конуса по трубе 9 в по догреватель 1 питательной воды, откуда через трубу.10 увлекается при помощи вакуум-аппарата 2, работающего на использованном паре,подводимом по трубе 18 от трубины 6, и направляется в конденсатор 3, трубки которого омывает обогреваемый воздух, нагнетаемый через подогреватель Н по трубе 16 вентилятором 8 и направляемый по трубе 17 в поддувало...

На другой.Нагреватель и охладитель соединены между собой посредством устройств 6 (насос, дроссели и др.), обеспечивающих работу установки в режиме холодильника абсорбционного или другого типа.Охладительные элементы размещены в расширенной части 7 канала 1 в виде шнекообразного воздуховода, что позволяет продлить время контакта воздуха с охладителем и за счет скорости воздушного потока удалить тепло, выделяющееся при конденсации влаги, обеспечив в то же время испарение части конденсата (4,(испарение 1воды приводит к охлаждению всего ее обьема на 6 С).Для исключения всасывания воздуха через спивную трубку, последняя выполнена с коленом (гидравлический затвор).Для обеспечения автономного энергопитания в канале 1 может быть размещен рабочий...

Помещений.Установка имеет трц изолированных тракта, работающих следующим образом.Газовый тракт. Продукты сгорания газа 15 омывают теплообменник 4, через стенку трубы5 нагревают прцточный воздух и воду в баке- накопителе 7 горячей воды, выполняюгцем роль аккумулятора и догревателя, после чего выбрасывается в атмосферу.20 Воздушный тракт. Поступающий в установк наружный воздух контактируется с развитой поверхностью трубы 5 по всей ее высоте, нагревается ц гравитационно - за счет разности удельных весов холодного и нагретого 25 воздуха - поднимается вверх. Через распределительный кольцевой короб 8 нагретый воздх проходит по асбоцементным коробам-воздуховодамп 9 и поступает через регулируемые жалюзпйные решетки 10 в различные ком- ЗО...

В разделе на вопрос Как устроен сосуд Мариотта и принцип его действия? заданный автором Ult лучший ответ это Сосуд Мариотта.
Весьма поучительным для понимания движения жидкости является истечение жидкости из сосуда Мариотта. Он позволяет обеспечить постоянную скорость вытекания жидкости из сосуда, несмотря на понижения ее уровня. Для этого в сосуд через герметичную пробку в его горловину вводится трубочка, сообщающаяся с атмосферой. Скорость вытекания определяется по формуле Торичелли, где h - высота нижнего конца трубки над отверстием.
ЭТО ПРОИСХОДИТ ПОТОМУ, что при незначительном истечении жидкости из полностью заполненного сосуда давление под пробкой будет меньше атмосферного, а давление в горизонтальной плоскости, совпадающей и нижним концом трубки, равно атмосферному.
Скорость вытекания легко регулируется вертикальным перемещением трубки. Если конец трубки находится на уровне h=0 или ниже отверстия, то жидкость не вытекает вовсе.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как устроен сосуд Мариотта и принцип его действия?

Введение в физику открытых систем: аттрактор Лоренца

Колебания и волны: Энергия, переносимая звуковой волной.

Введение в физику открытых систем: Динамическое и статистическое описание сложных движений

Автомодельность

Колебания и волны: Предисловие

Механика сплошных сред. Лекции.

Вытекание жидкости через отверстие в сосуде.

Пусть жидкость, заполняющая сосуд, под действием силы тяжести вытекает из него через отверстие в боковой стенке, расположенное вблизи дна сосуда (рис. 3.6). В отверстие вставлена горизонтальная трубка с закругленной внутренней кромкой, направляющая вытекающую струю воды. Закругленная кромка обеспечивает полное заполнение трубки вытекающей жидкостью.
Рис. 3.6.

Разобьем текущую жидкость на трубки тока. Одна из таких трубок изображена на рисунке 3.6. Хотя мы и не знаем, как выглядят эти трубки, однако все они начинаются на свободной поверхности жидкости и заканчиваются на выходном торце сливной трубки. Если площадь отверстия трубки S значительно меньше площади свободной поверхности S 0 , то при истечении жидкости ее опускающаяся с некоторой скоростью v 0 поверхность будет оставаться горизонтальной. Это означает. что константа, входящая в уравнение Бернулли (3.14), будет одинакова для всех трубок тока:

Здесь H - высота уровня жидкости в сосуде. Поэтому скорость истечения жидкости v определяется из уравнения

Эта формула носит название формулы Торичелли, поскольку была получена Торичелли, жившем до Бернулли. Сразу бросается в глаза, что скорость истечения жидкости из сосуда такая же, как и при ее свободном падении с высоты H. В этом нет ничего удивительного, поскольку вязкостью мы пренебрегли, а работа сил атмосферного давления над трубкой тока равна нулю. Поэтому, как и при свободном падении тел в отсутствие сопротивления воздуха, при ращение кинетической энергии равно работе силы тяжести:

Справедливость формулы Торичелли можно легко проверить, если на выходную трубку надеть кусок гибкого шланга и вытекающую струю воды направить вверх под небольшим наклоном к вертикали (рис. 3.7). Струя поднимется практически до уровня поверхности жидкости. Если же струю направить вертикально вверх, то взлетающие вверх частицы жидкости, взаимодействуя с падающими вниз частицами, не смогут подняться на высоту H.
Рис. 3.7.

Интересно отметить, что трубки тока жидкости расположены преимущественно ближе к стенке сосуда с отверстием, в то время как у противоположной (левой на рис. 3.8) стенки жидкость практически малоподвижна. Это означает, что на левую стенку действуют силы давления, которое легко посчитать, используя линейный закон нарастания гидростатического давления с глубиной, даваемой формулой (2.11). Расчет сил давления, действующих на правую стенку, требует гидродинамического решения задачи. Однако и без такого расчета ясно, что в трубке тока, примыкающей к правой стенке, давление на каждой глубине будет меньше соответствующего этой глубине гидростатического давления. Это означает, что равнодействующая сил давления, действующих на обе стенки, направлена в сторону, противоположную направлению истечения жидкости. Под действием этой силы, называемой также реактивной, сосуд, поставленный на колеса, может придти в движение. Величину этой силы легко посчитать с использованием формулы Торичелли. По 3-му закону Ньютона искомая реактивная сила равна по величине силе, с которой стенки сосуда действуют на воду, сообщая ее (по 2-му закону Ньютона) приращение импульса в направлении истечения. Поскольку масса, вытекающая через отверстие с сечением S равна , то изменение импульса в единицу времени составит величину Поэтому реактивная сила

где - величина гидростатического давления на глубине H, S - площадь отверстия в правой стенке.
Однако можно добиться одинакового (гидростатического) распределения давлений у обеих стенок, если конец трубки с острой кромкой будет отстоять от правой стенки, как показано на рис. 3.9. В этом случае реактивная сила может определяться с помощью формулы (3.20). Если же ее вычислять при помощи (3.19), то в этой формуле надо вместо сечения трубки S подставить сечение струи воды в трубке S B =kS, где коэффициент истечения k1/2. При таком истечении трубка будет заполнена жидкостью приблизительно наполовину.

а реактивная сила возрастает линейно с повышением избыточного давления над свободной поверхностью жидкости.

Гидрорезание.

Если создать очень высокое избыточное давление, например, 5000 атм = 5*10 Н/м2, то скорость истечения воды v = 1000 м/с. Если такую струю направить на какой-либо твердый материал, то его поверхность будет подвержена гидродинамическому давлению Такое огромное давление в ряде случаев может превосходить предел прочности некоторых материалов, и последние будут разрушаться под действием струи. Со второй половины 80-х годов получило развитие новое направление в обработке материалов - гидрорезание. В этой технологии водяной нож - высоко-скоростная струя воды с диаметром иглы - легко режет материалы толщиной в несколько сантиметров со скоростью резания несколько десятков сантиметров в минуту. Для резки металлов, твердых сплавов, бетона и других материалов в струю добавляют абразивный порошок. Это позволяет значительно увеличить гидродинамическое давление и повысить производительность и возможности гидрорезания.

Сосуд Мариотта.

Весьма поучительным для понимания движения жидкости является истечение жидкости из сосуда Мариотта. Он позволяет обеспечить постоянную скорость вытекания жидкости из сосуда, несмотря на понижения ее уровня. Для этого в сосуд через герметичную пробку в его горловину вводится трубочка, сообщающаяся с атмосферой (рис. 3.10). Скорость вытекания определяется по формуле Торичелли , где h - высота нижнего конца трубки над отверстием. Это происходит потому, что при незначительном истечении жидкости из полностью заполненного сосуда давление под пробкой будет меньше атмосферного, а давление в горизонтальной плоскости, совпадающей и нижним концом трубки, равно атмосферному. Скорость вытекания легко регулируется вертикальным перемещением трубки. Если конец трубки находится на уровне h=0 или ниже отверстия, то жидкость не вытекает вовсе.
Рис. 3.10.

Условие несжимаемости движущейся жидкости.

Равенство (3.2), являющееся условием несжимаемости, связывает скорости движущейся жидкости в двух различных сечениях. Между тем, как на это неоднократно обращалось внимание в предыдущих лекциях, в физике важно оперировать с равенствами или уравнениями, отнесенными к одной точке пространства.
Для этого рассмотрим деформацию движущегося кубического элемента жидкости. Если его объем через малый отрезок времени не изменяется, то сумма диагональных элементов тензора деформации равна нулю, т.е.

Здесь u x , u y и u z - смещения граней кубика в направлении соответствующих осей координат. Однако эти смещения связаны со скоростями движения граней (а точнее, частиц жидкости, находящихся в данный момент на этих гранях):

Подставляя эти равенства в (3.22), получаем локальное (относящееся к одной точке пространства) условие несжимаемости в виде

Дивергенция вектора является скалярной функцией координат и времени и легко рассчитывается, если известны компоненты векторного поля (в нашем случае v x , v y и v z). Поэтому условие (3.22) постоянства объема несжимаемой жидкости записывается кратко:
(3.24)

Отметим, что уравнение (3.24) является одним из основных уравнений гидродинамики несжимаемой жидкости.
Следует отметить, что имеется множество векторных полей, как, например, электрическое E =E (x,y,z,t) и магнитное B =B (x,y,z,t) поля и др., при описании которых также широко используется понятие дивергенции: div E или div B и т.д. Хотя она определяется в соответствии с (3.23), вводится, однако, несколько из других соображений, поскольку в электродинамике не идет речь о движении и деформации элемента материальной среды.
На примере векторного поля скоростей v =v (x,y,z,t) поясним фундаментальный смысл понятия дивергенции.
Для этого рассмотрим неподвижный элементарный объем пространства. dV=dxdydx и посчитаем объем жидкости, втекающий и вытекающий из этого объема за единицу времени.
Введем понятие элементарного потока вектора скорости v через маленькую площадку dS:
(3.25)

где dS =n dS - вектор, направленный по нормали n к элементарной площадке. Ясно, что поток (3.25) равен объему жидкости, пересекающей площадку dS за единицу времени (рис. 3.12). Он допускает также наглядную геометрическую интерпретацию. В самом деле, в соответствии с определением линий тока, данным в начале этой лекции, их густота характеризует скорость течения. Поэтому величине скорости всегда можно поставить в соответствие количество линий тока, пересекающих площадку с dS=1 и n || v. Тогда поток dN v в (3.25) будет характеризоваться числом линий, пересекающих площадку при ее произвольной ориентации.
Рис. 3.12.

Теперь легко посчитать баланс между втекающей и вытекающей жидкостью для элементарного объема, изображенного на рис. 3.12. Для этого восстановим внешние нормали по всем 6-ти граням кубика и посчитаем потоки жидкости через его грани. Легко понять, что положительное значение потока будет для вытекающей жидкости, а отрицательное - для втекающей. Если скорость в центре кубика v (x,y,z) изменяется при приближении к соответствующим граням, то при вычислении такого потока это необходимо учесть. Результирующий поток определится следующим образом:

Таким образом, дивергенция вектора скорости численно равна потоку жидкости через поверхность единичного объема. Если жидкость несжимаема, то, естественно, этот поток должен быть равен нулю. Графически последнее интерпретируется как равенство количества входящих и выходящих линий тока для этого объема. Это, в свою очередь, означает, что в окрестности точки, где div v =0, линии тока не прерываются. Поэтому равенство div v =0 называют условием неразрывности.
Из школьного курса физики известно, что силовые линии электростатического поля (аналог линий тока) прерываются только на зарядах. Поэтому для областей, не занятых зарядами, мы также вправе написать . Силовые линии индукции магнитного поля B всегда замкнуты, поэтому во всех случаях div B =0.

Для принтера, а именно снпч!

Самодельная СНПЧ состоит из 3 основных узлов

  1. донор СНПЧ — (Tank) емкость (бак) в которой содержатся чернила
  2. шлейф снпч — склеенные между собой ПВХ трубки по которым осуществляется транспортировка чернил из донора к печатающей головке (ПГ)
  3. капсула снпч — колба небольшого объема (1-2мл) устанавливаемая непосредственно на печатающую головку. (Применяется в капсульных системах). Либо картридж — стандартный картридж с некоторыми доработками (Применяется в картриджных СНПЧ)

В зависимости от модели принтера (особенностей устройства печатающей головки) выбирается тип системы. Если есть возможность выбора типа системы, предпочтение лучше отдать капсульной снпч . Связанно это с тем, что в картриджных снпч (испытанно на модели Canon i250) сложнее добиться герметичности системы в районе стыковки картриджа и ПГ, а герметичность — основное условие правильной работы системы непрерывной подачи чернил.

Принцип работы СНПЧ:

В упрощенном виде СНПЧ представляет собой два сообщающихся сосуда, первым сосудом является донор, вторым является ПГ (печатающая головка принтера),

Сосуды сообщаются при помощи шлейфа, состоящего из склеенных ПВХ трубок. Рассмотрим первый сосуд — донор СНПЧ . Он представляет собой собой емкость, сделанную по принципу сосуда Мариотта. Данная емкость состоит из нескольких компонентов:

  • основной бак
  • верхняя крышка (автором использовалась крышка от электрических коммутационных коробок, т.к. без доработки подходила по диаметру)
  • емкость для стабилизации давления (шприц герметично приклеенный к верхней крышке основного бака)
  • воздушный клапан (выполнен из «верхней» части инсулинового шприца)
  • чернильный клапан (выполнен из «средней» части инсулинового шприца)
  • трубка подачи чернил (выполнена из «нижней части инсулинового шприца)
  • поршень для запирания клапанов (штатный поршень инсулинового шприца)

Сосуда Мариотта позволяет обеспечить постоянную скорость вытекания жидкости из сосуда, несмотря на понижения ее уровня (в нашем случае позволяет вести печать как при полностью заправленном, так и почти израсходованном баке). Для этого в сосуд через герметичную пробку в его горловину вводится трубочка, сообщающаяся с атмосферой (рис. 1 ). Скорость вытекания определяется по формуле Торричелли , где h — высота нижнего конца трубки над отверстием. Это происходит потому, что при незначительном истечении жидкости из полностью заполненного сосуда давление под пробкой будет меньше атмосферного, а давление в горизонтальной плоскости, совпадающей и нижним концом трубки, равно атмосферному. Скорость вытекания легко регулируется вертикальным перемещением трубки. Если конец трубки находится на уровне h=0 или ниже отверстия, то жидкость не вытекает вовсе .

рис1 рис2

рис3 рис4

В нашем случае в качестве трубки сообщающейся с атмосферой выступает 20 милилитровый шприц, объем шприца был выбран из нескольких соображений:

  1. шприц должен доставать до дна бака
  2. объем должен быть достаточным для компенсации расширения-сжатия при изменении температуры воздуха.

На рисунке №2 изображен собранный действующий донор спнч. На рисунке №3 изображено содержимое донора, а именно: 1-чернильный клапан, 2-емкость для стабилизации давления (обратите внимание, что носик шприца запаян, а для сообщения с атмосферой в верхней части шприца просверлено отверстие обозначенное цифрой 3). 4- трубка подачи чернил. На рисунке №2 изображено: 1- выход трубки подачи чернил, к которой подключается шлейф снпч. 2- воздушный клапан, 3- чернильный клапан.

Таким образом, трубка-сосуд стабилизации давления (скорости вытекания жидкости) доходит практически до дна бака, при этом трубка подачи чернил упирается в самое дно бака. На конце трубки подачи чернил имеется небольшой пропил для поступления чернил. Как заправить и сбалансировать наш сосуд Мариотта Вы узнаете. перейдя по ссылке на странице . . Итак, с баком мы разобрались. Теперь предстоит рассмотреть второй сообщающийся сосуд, а именно печатающую головку принтера, которая соединена с донором шлейфом из склеенных ПВХ трубочек. В ПГ нас интересует уровень, на котором расположены дюзы (сопла из которых распыляется краска), попросту говоря, нижняя поверхность ПГ. Итак мы рассматриваем два уровня:

  1. Уровень — уровень расположения отверстия в емкости для стабилизации давления (20 мл шприц), практически дно банки
  2. Уровень дюз ПГ

Уровень дюз ПГ должен быть немного выше уровня отверстия в емкости для стабилизации давления, приблизительно на 10мм для моделей Canon i250- IP1500 , для других моделей могут быть другие значения. Почему ПГ должна быть выше? В случае если уровень ПГ будет ниже уровня отверстия, краска будет произвольно вытекать из ПГ. И наоборот, в случае если уровень ПГ будет выше на значительную величину, воздух будет просачиваться через дюзы ПГ и попадать в бак. Нахождение оптимального соотношение этих уровней очень важный момент при создании СНПЧ. Таким образом в ПГ должно быть маленькое отрицательное давление, что бы чернила удерживались в дюзах и выпрыскивались на бумагу только при печати. Еще раз напомню, что ПГ и донор соединены герметично шлейфом. Теперь можно переходить к рассмотрению непосредственно .

Вы также можете прислать любые свои самодельные кострукции, и я с удовольствием их размещу на этом сайте с указанием Вашего авторства! samodelkainfo{собачка} yandex.ru

Жидкость можно подавать под действием 


    Применение сосудов Мариотта обеспечивает должное постоянство скорости потока и делает систему достаточно жесткой, так как создает неразрывный столб жидкости н исключает образование 

Часто желательно подаваемую в абсорбер жидкость содержать в емкости, расположенной примерно на 3 м выше абсорбционной камеры . Это обусловлено отчасти необходимостью обеспечения напора, достаточного для поддержания довольно большого расхода жидкости , например в абсорбере с ламинарной струей . Кроме того, из-за относительно постоянного уровня жидкости в напорной емкости это позволяет поддерживать практически одинаковый расход жидкости на протяжении всего опыта без применения специальных регулирующих приспособлений. При более низком расположении напорной емкости для обеспечения постоянной подачи жидкости в абсорбер иногда необходимо снабжать емкость специальным устройством для поддержания в ней постоянства уровня жидкости, например использовать сосуд Мариотта. Однако при этом жидкость будет аэрироваться. 

Тарирование расходомеров и коллекторов и проверка герметичности установок, а также определение коэффициента трения в смесительной трубе лабораторной установки производились объемным методом с помощью специально изготовленного газгольдера большой емкости , работавшего по схеме сосуда Мариотта. 

Объяснение. Манометр 9, собственно говоря, показывает лишь понижение давления газа в сосуде 1. Но, согласно закону Бойля - Мариотта, концентрация газа и его давление прямо пропорциональны друг другу при постоянной температуре . Уменьшение давления газа в описываемом опыте и явилось результатом уменьшения его концентрации, так как значительная часть аммиака поглотилась углем. 

В сосуд для титрования (см. рис. 12, г) наливают 50 мл анализируемого (0,1-0,05 н.) раствора, погружают электроды с мешалкой, включают мотор для вращения ванны и милливольтметр. При помош,и делителя напряжений стрелку милливольтметра устанавливают в такое положение, при котором кондуктометрическая кривая может полностью разместиться на ленте. Если электропроводность раствора при титровании понижается, стрелку устанавливают в верхней части шкалы, если повышается- в нижней. Затем прибор устанавливают так, чтобы отводная трубка сосуда Мариотта (см. рис. 14) находилась над ячейкой. Включают регистрирующую часть милливольтметра и при нанесении второго показания на ленту начинают подачу стандартного раствора . Запись кривой заканчивают при избытке титранта. После окончания титрования электроды вынимают и удаляют из ячейки раствор . Промывают ячейку и электроды дистиллированной водой и проводят параллельные определения . На кондуктометрических кривых графическим методом устанавливают точки эквивалентности и определяют количество интервалов между записью показаний милливольтметра до ее изломов. Десятые доли интервалов вблизи точки эквивалентности находят на глаз. Продолжительность титрования зависит от числа определяемых компонентов и достигает 5-20 мин. 

Обратимся теперь к рассмотрению того, какими свойствами в действительности обладают реальные газы . Закон Бойля - Мариотта очень хорошо описывает поведение газов при достаточно низких давлениях , но при высоких давлениях наблюдаются заметные отклонения от этого закона. Как мы помним, из кинетической теории следует, что давление газа представляет собой результат коллективного действия молекул , сталкивающихся со стенками сосуда . При сжимании газа в уменьшающемся объеме происходит все большее число столкновений молекул со стенками сосуда , а это означает повышение давления . Но если учесть, что молекулы сами имеют некоторый объем , то можно понять, что закономерная взаимосвязь между объемом и давлением газа должна выполняться лишь до определенного предела , зависящего от собственного объема молекул. На рис. 9.9 схематически изображено состояние газа при различных давлениях и видно, что при очень высоких давлениях собственный объем молекул должен существенно изменять закономерную сжимаемость газа . Следовательно, объем газа при высоких давлениях можно рассматривать как идеальный объем , т.е. объем 

Газометр, изображенный на рис. 76, отличается от предыдущего лишь напорным устройством , в качестве которого использован сосуд Мариотта, обеспечивающий постоянство напора вытекающей из него жидкости. Давление газа в газометре определяется величиной столба затворной жидкости к между уровнями нижнего конца трубки 4 и перелива жидкости в гидрозатворе. Преимущество газометра этой конструкции состоит в том, что в качестве затворной жидкости в нем можно использовать рассол. 

При больших расходах используют сосуды Мариотта (см. рис. 76) и переливные устройства (см. рис. 75). Последние можно 

Наливают в сосуд Мариотта 3 л этилового спирта. 

Вода, поступая в рубашку снизу, разветвляется вверху на два потока главная масса воды направляется в эжектор, остальная идет в сосуд Мариотта. Избытки воды из последнего идут в слив. Конденсат из термостата выводится в ТО Т же сосуд.