Какие питательные вещества нужны растениям. Минеральное питание


Микроэлементы и макроэлементы и их роль в жизни растений

К макроэлементам относят те, которые содержатся в растениях в значительных (от сотых долей до целых процентов) количествах - это углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний и железо. К микроэлементам относят те, которые содержатся в растениях в очень незначительных (от стотысячных до тысячных долей процента) количествах, но которые, несмотря на столь малое количество, оказывают сильное воздействие на жизненные процессы растений - это бор, медь, цинк, молибден, марганец, кобальт и др.
Для начала нужно посмотреть на картинку справа.
Иногда видишь что растение болеет, а чем помочь не ясно.
Вот именно поэтому я и собрала картинки наглядно показывающие как выглядят растения если им чего-то не хватает.
Ну и умные слова найдете под катом о том как выглядят растения, потому что иной раз и картинки недостаточно:)

1. Недостаток азота
при азотном голодании рост различных культур замедляется. Если на Вашем участке случилась такая ситуация, на это Вам могут указать следующие растения: огурцы, картофель, черная смородина, белокочанная и цветная капуста, кукуруза, слива, яблоня. Плоды осыпаются, мельчают, мякоть становится плотная.

Первым признаком недостатка азота будет замедленный рост всех надземных частей растения. А затем поменяется и окраска листьев. Сначала они меняют окраску на бледно-зеленую, после чего непременно пожелтеют. Некоторые растения приобретают красноватый или оранжевый оттенок листьев. Изменение окраски листьев начинается с нижних ярусов. Постепенно заболевание переходит на верхние листья, а нижние высыхают и отмирают.
Кроме этих симптомов при азотном голодании происходят следующие процессы:

Стебли растений становятся одревесневшими

Листья располагаются под острым углом к стеблю

Количество цветков уменьшается и они опадают

Плоды имеют небольшой размер и несоответствующую окраску

Весь срок вегетации происходит быстрее положенного.

2. Недостаток калия
При скудном питании калием в растении происходит его перераспределение: из старых органов он переходит в более молодые, способствуя их развитию. Признаки недостатка обычно заметны бывают в середине вегетации, в период сильного роста растений. При недостатке калия окраска листьев голубовато-зеленая, тусклая, часто с бронзовым оттенком. Наблюдается пожелтение, а в дальнейшем побурение и отмирание кончиков и краев листьев (краевой "ожог" листьев). Развивается бурая пятнистость особенно ближе к краям. Края листьев закручиваются, наблюдается морщинистость.

Жилки кажутся погруженными в ткань листа. Стебель тонкий, рыхлый, полегающий. Недостаток калия вызывает обычно задержку роста, а также развития бутонов или зачаточных соцветий. Листья вянут и поникают, по краям светло-зеленые пятна, затем коричневые.

При избытке калия листья приобретают более темный оттенок, а новые листья мельчают. Избыток калия приводит к затрудненному усвоению таких элементов как кальций, магний, цинк, бор и др.

3. Недостаток магния
Магний входит в состав хлорофилла, что определяет его важное значение в жизни растений: он участвует в углеводном обмене, действии ферментов и в образовании плодов. При недостатке магния наблюдается характерная форма хлороза - у краев листа и между жилками зеленая окраска изменяется на желтую, красную, фиолетовую. Между жилками в дальнейшем появляются пятна различного цвета вследствие отмирания тканей. При этом крупные жилки и прилегающие к ним участки листа остаются зелеными. Кончики листьев и края загибаются, в результате чего листья куполообразно выгибаются, края листьев морщинятся и постепенно отмирают. Признаки недостатка появляются и распространяются от нижних листьев к верхним. У плодовых растений наблюдается ранний листопад, начинающийся с нижних побегов даже летом, и сильное опадение плодов.
У садовой клубники или земляники недостаток магния также можно определить по изменению окраски листьев. Ткань листа между жилками может пожелтеть, покраснеть или стать пурпурной, фиолетовой, при этом прожилки листьев еще долго продолжают оставаться зелеными. При очень сильном магниевом голодании листья ягодников преждевременно засыхают.
При избытке магния, у растения начинают отмирать корни, растение перестает усваивать кальций, и наступают такие симптомы, которые характерны при недостатке кальция.

4. Недостаток меди
Недостаток или избыток меди чаще ощутим на торфя­ных, реже на кислых песчаных почвах. В жаркое время года медное голодание усиливается.
Медь играет специфическую роль в жизни растений: регулирует фотосинтез и концентрацию образующихся в растении ингибиторов роста, водный обмен и перераспределение углеводов, входит в состав ферментов, повышает устойчивость к полеганию. Недостаток меди вызывает у растений задержку роста и цветения, хлороз листьев, потерю упругости клеток (тургора) и увядание растений. Известкование почв увеличивает поглощение меди почвенными частицами и снижает ее доступность для растений. Избыток меди также чрезвычайно вреден для растения. Проявляется он в том, что растение тормозится в развитии, на листьях появляются бурые пятна и они отмирают. Начинается процесс с нижних более старых листьев.
Листья выглядят вялыми, закручиваются внутрь в трубочку, белеют на кончиках. Молодые листья мельчают, приобретают сине-зеленый оттенок. Побеги становятся слабыми, цветы сбрасываются.

5. Недостаток молибдена
При слабом недостатке появляется желтая или бледно-коричневая окраска, или некротические пятна. При сильном недостатке хлорозная ткань отмирает. У крестоцветных окраска зеленая или зелено-синяя, листовая пластинка искривляется и редуцируется. Точка роста и сердечко отмирают. Цветение и образование семян замедляются. Уменьшаются величина, количество и изменяется цвет клубеньковых бактерий.
Молибден необходим растениям в еще меньших количествах, чем бор, марганец, цинк и медь. Он преимущественно накапливается в молодых растущих органах, входит в состав ферментов, регулирующих азотный обмен в растениях, участвует в синтезе нуклеиновых кислот (РНК и ДНК) и витаминов и регулирует фотосинтез и дыхание. При недостатке молибдена в растениях нарушаются многие процессы жизнедеятельности, в тканях растений накапливаются нитраты, что особенно опасно при избыточном применении азотных удобрений (включая навоз): чем выше дозы применяемых азотных удобрений, тем больше потребность растений в молибдене. Внешние признаки дефицита молибдена для растений сходны с азотным голоданием: тормозится рост растений, листья приобретают бледно-зеленую окраску, деформируются и преждевременно отмирают. Листья светлеют, желтеют, края закручиваются вверх. Появляются желтые крапинки между жилками листа, сами жилки не затрагиваются

Вновь развивающиеся листья вначале зеленые, но по мере роста становятся крапчатыми. Участки хлоротичной ткани впоследствии вздуваются, края листьев закручиваются внутрь; вдоль краев и на верхушках листьев развивается некроз. Большие дозы молибдена весьма токсичны для растений, поэтому содержание даже 1 мг молибдена в 1 кг сухой массы продукции вредно для человека и животных.

6. Недостаток серы
Сера входит в состав белков, витаминов, необходима для нормального роста и развития растения. При недостатке серы образуются мелкие, со светлой желтоватой окраской листья на вытянутых стеблях, ухудшаются рост и развитие растений. У плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании желтеют верхние листья растения и не опадают, хотя имеют бледную окраску. Недостаток серы проявляется в замедлении роста стеблей в толщину. При избытке серы листья постепенно желтеют с краев и скукоживаются, подворачиваясь внутрь. Затем буреют и отмирают. Иногда листья принимают не желтый, а сиреневато-бурый оттенок.

7. Недостаток цинка
Цинк необходим всем растениям, особенно плодовым. Как и другие микроэлементы, цинк играет важную роль в белковом, углеводном и фосфорном обмене, в биосинтезе витаминов и ростовых веществ (ауксинов). При дефиците цинка в растениях задерживается образование сахарозы, крахмала и ауксинов, нарушается образование белков, вследствие чего в них накапливаются небелковые соединения азота и нарушается фотосинтез. Это ведет к подавлению процесса деления клеток и влечет за собой морфологические изменения листьев (деформацию и уменьшение листовой пластинки) и стеблей (задержку роста междоузлий), т.е. к торможению роста растений. Симптомы недостатка цинка развиваются на всем растении или локализованы на более старых нижних листьях.
Вначале на листьях нижних и средних ярусов, а потом и на всех листьях растения, появляются разбросанные пятна серобурого и бронзового цвета. Ткань таких участков как бы проваливается и затем отмирает. Молодые листья ненормально мелки и покрыты желтыми крапинками или же равномерно хлоротичны, принимают слегка вертикальное положение, края листьев могут закручиваться кверху. У плодовых деревьев на концах ветвей образуются укороченные побеги с мелкими листьями, расположенными в виде розетки (так называемая "розеточность"), а при сильном дефиците появляется "суховершинность".

8. Еще поясняющие фотки добавлю.

Минеральное питание растений

Для нормального жизнедеятельного цикла растительного организма необходима определённая группа питательных элементов, функции которых в растении не могут быть заменены другими химическими элементами.

Это: 1) органогены – С (45 % сухой массы); О (42%); Н (6,5 %); N (1,5 %) - в сумме 95 %;

2) макроэлементы (1 – 0,01 %): P, S, K, Ca, Mg, Fe, Al, Si, Cl, Na;

3) микроэлементы (0,01 – 0,00001 %) : Mn, Cu, Zn, Co, Mo, B, I;

4) ультрамикроэлементы (< 0,00001 %): Ag, Au, Pb, Ge….и др.

Ю. Либихом было установлено, что все перечисленные элементы равнозначны и полное исключение любого из них приводит растение к глубокому страданию и гибели, ни один из перечисленных элементов не может быть заменен другим, даже близким по химическим свойствам. Макроэлементы при концентрации 200-300 мг/л в питательном растворе еще не оказывают вредного действия на растение. Большинство микроэлементов при концентрации 0,1-0,5 мг/л угнетают рост растений.

Для нормальной жизнедеятельности растений должно быть определенное соотношение различных ионов в окружающей среде. Чистые растворы одного какого-либо катиона оказываются ядовитыми. Так, при помещении проростков пшеницы на чистые растворы KCL или CaCL 2 на корнях сначала появлялись вздутия, а затем корни отмирали. Смешанные растворы этих солей не обладали ядовитым действием. Смягчающее влияние одного катиона на действие другого катиона называют антагонизмом ионов . Антагонизм ионов проявляется как между разными ионами одной валентности, например, между ионами натрия и калия, так и между ионами разной валентности, например, калия и кальция. Одной из причин антагонизма ионов является их влияние на гидратацию белков цитоплазмы. Двухвалентные катионы (кальций, магний) дегидратируют коллоиды сильнее, чем одновалентные (натрий, калий). Следующей причиной антагонизма ионов является их конкуренция за активные центры ферментов. Так, активность некоторых ферментов дыхания ингибируется ионами натрия, но их действие снимается добавлением ионов калия. Кроме того, ионы могут конкурировать за связывание с переносчиками в процессе поглощения. Действие одного иона может и усиливать влияние другого иона. Это явление называется синергизмом . Так, под влиянием фосфора повышается положительное действие молибдена.

Физиологическое значение микро- и макроэлементов


1. Входят в состав биологически важных питательных веществ;

2. Участвуют в создании определённой ионной концентрации и стабилизации макромолекул;

3. Участвуют в каталитических реакциях, входя в состав или активируя отдельные ферменты.

Азот (N 2)

Входит в состав белков, нуклеиновых кислот, фосфолипидов мембран, порфиринов (основа хлорофилла и цитохромов), многочисленных ферментов (в т.ч. NAD и NADP) многих витаминов.

При недостатке азота в среде тормозится рост растений, ослабляется образование боковых побегов, наблюдается мелколистность и бледно-зелёная окраска листьев вследствие разрушения хлорофилла.

Несмотря на наличие в атмосферном воздухе 78 % N 2 (410 5 т), такой молекулярный азот не усваивается высшими растениями (молекула азота (NN) химически инертна; для разрыва трех ее ковалентных связей в химическом процессе синтеза аммиака требуются катализаторы, высокие температура и давление) и может переходить в доступную для них форму только благодаря деятельности микроорганизмов-азотфиксаторов. Из литосферных запасов азота (1810 15 т) в почве сосредоточена лишь его минимальная часть, из которой лишь 0,5 – 2 % прямо доступно растениям: - это NH 4 + и NO 3 - -ионы, образующиеся в результате минерализации бактериями органического азота растительных и животных остатков и гумуса. А именно, процессов:

1. Аммонификации (превращение органического азота в NH 4 +);

2. Нитрификации (окисление NH 4 + до NO 3 -);

3. Денитрификации (анаэробное восстановление NO 3 - до N 2)

Фиксация молекулярного азота ( N 2)

Химическое связывание молекулярного азота в форме NH 4 + или NO 3 - осуществляется либо в результате электрических разрядов в атмосфере, либо в присутствии катализатора при температуре более 500 0 С и атмосферном давлении около 35 МПа.

Биологическое связывание молекулярного азота атмосферы осуществляется азотфиксирующими микроорганизмами. Они бывают:

1. Свободноживущие (р. Azotobacter, Beijrinckia – аэробные и р. Clostridium – анаэробные);

2. *Симбиотические (р. Rhizobium, образующий клубеньки на корнях бобовых растений, и некоторые актиномицеты).

*Инфицирование растения хозяина симбиотическими бактериями начинается с проникновения бактерии в клетку корневого волоска, миграции в клетки коры и интенсивного деления инфицированных клеток, что приводит к образованию клубеньков на корнях. При этом сами бактерии превращаются в бактероиды , которые в 40 раз больше по размеру, чем исходная бактерия. Основная роль в процессе азотфиксации принадлежит ферменту нитрогеназе . Фермент состоит из двух компонентов: более высокомолекулярного Fe-Mo белка (Мr = 200-250 000, 2 молекулы Mo, 30 молекул Fe и 22 молекулы S) и Fe-белка (Мr = 50-70 000, 4 молекулы Fe и 4 молекулы S). Fe-Mo белок служит для связывания и восстановления молекулярного азота, а Fe-белок служит источником электронов для восстановления Fe-Mo белка, которые он получает от ферредоксина. Весь комплекс работает только в присутствии гидролиза АТР и защитного действия белка легоглобина (синтезируется клетками хозяина и защищает нитрогеназу от кислорода).

Образующийся NH 4 + , связывается с кетокислотами, образуя аминокислоты, транспортируемые в клетки растения-хозяина.

Редукция нитрата и пути ассимиляции аммиака

Так как в органические соединения включается только аммонийный азот, нитрат-ионы NO 3 - , поглощаемые корнем, должны восстанавливаться в клетках до аммиака. Осуществляется это в два этапа:

1. Восстановление нитрата до нитрита, катализируемое нитратредуктазой (в цитоплазме); NO 3 - ---2 e---- NO 2 -

2. Восстановление нитрита до аммиака, катализируемое нитритредуктазой (в хлоропластах). NO 2 - ---- 6e--- NH 4 +

Аммиак, образующийся при восстановлении нитратов или в процессе фиксации молекулярного азота, далее усваивается растениями с образованием различных аминокислот. В первую очередь акцептором NH 4 + является α-кетоглутаровая кислота, которая под действием глутаматдегидрогеназы превращается в глутамат.

Растения способны поглощать из окружающей среды в больших или меньших количествах практически все элементы периодической системы. Между тем для нормального жизненного цикла растительного организма необходима лишь опреде­ленная группа основных питательных элементов, функции ко­торых в растении не могут быть заменены другими химическими элементами. В эту группу входят следующие 19 элементов:

Молибден

Кислород

Марганец

(Кремний)

(Кобальт)

Среди этих основных питательных элементов лишь 16 являются собственно минеральными, так как С, Н и О посту­пают в растения преимущественно в виде СО 2 , О 2 и Н 2 О. Эле­менты Na, Si и Со приведены в скобках, поскольку их необхо­димость для всех высших растений пока не установлена. Натрий поглощается в относительно высоких количествах не­которыми видами сем. Chenopodiaceae (маревых}, в частности свеклой, а также видами, адаптированными к условиям засоле­ния, и в этом случае является необходимым. То же справедли­во для кремния, который в особенно больших количествах встречается в соломине злаковых, для риса он является необхо­димым элементом.

Первые четыре элемента - С, Н. О, N - называют органо­ генами. Углерод в среднем составляет 45% сухой массы тка­ней, кислород - 42, водород - 6,5 и азот - 1.5. а все вме­сте - 95%. Оставшиеся 5% приходятся на зольные вещества: Р, S, К, Са, Мg, Ре, А1, Si, Na и др. О минеральном составе растений обычно судят но анализу золы, остающейся после сжигания органического вещества растений. Содержание мине­ральных элементов (или их окислов) в растении выражают, как правило, в процентах по отношению к массе сухого вещества или в процентах к массе золы. Перечисленные выше вещества золы относятся к макроэлементам.

Элементы, которые присутствуют в тканях в концентрациях 0,001 % и ниже от сухой массы тканей, называют микроэлемен­ тами. Некоторые из них играют важную роль в обмене ве­ществ (Мg, Сu, Zn, Со, Мо, В, С1).

Содержание того или другого элемента в тканях растений непостоянно и может сильно изменяться под влиянием факто­ров внешней среды. Например. Аl, Ni, F и другие могут нака­пливаться в растениях до токсическою уровня. Среди высших растений встречаются виды, резко различающиеся по содержанию в тканях такпх элементов, как Na, о чем уже говорилось, и Са, в связи с чем выделяют группы расстении натриефилов, кальциефилов (большинство бобовых, в том числе фасоль, бобы, клевер), кальциефобов (люпин, белоус, щавелек и др.). Эти видовые особенности обусловлены характером почв в ме­стах происхождения и обитания видов, определенной генетиче­ски закрепленной ролью, которую укачанные элементы играют в обмене веществ растений.

Наиболее богаты минеральными элементами листья, у ко­торых зола может составлять от 2 до 15% от массы сухого ве­щества. Минимальное содержание золы (0.4-1%) обнаружено в стволах древесных.

Азот . Для растений азот - дефицитный элемент, Если неко­торые микроорганизмы способны усваивать атмосферный азот, то растениямогут использовать лишь азот минеральный, а животные - только азот органическою происхождения, да и то не любой. Например, мочевина животным организмом не­посредственно неусваивается. В то время как животные отно­сятся к азоту довольно расточительно, выделяя мочевую кислоту. мочевину и др. азотсодержащие вещества, растения почти не выделяют азотистые соединения как про­дукты отброса и там где то возможно, азотистые соединения заменены на безазотистые вещества. Например, у растений в состав полиеахаридов клеточных оболочек не входят гекеозамины характерные для мукополисахаридов животных и хитина членистоногих и грибов.

При недостатке азота в среде обитания тормозит­ся рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновре­менно уменьшается ветвление корней, но соотношение массы корней и надземной части может увеличиваться. Одно из ран­них проявлений азотного дефицит - бледно-зеленая окраска листьев, вызванная ослаблением синтеза хлорофилла. Длитель­ное азотное голодание ведет к гидролизу белков и разрушению хлорофилла прежде всею в нижних, более старых листьях и от­току растворимых соединений азота к более молодым листьям и почкам роста. Вследствие разрушения хлорофилла окраска нижних листьев в зависимости от вида растения приобретает желто-оранжевые или красные тона, а при сильно выражен­ном азотном дефиците возможно появление некрозов, высыха­ние и отмирание тканей. Азотное голодание приводит к сокра­щению периода вегетативного роста и более раннему созрева­нию семян.

Фосфор , как и азот, - важнейший элемент питания расте­ний. Он поглощается ими в виде высшего окисла РО 4 ~ и не изменяется, включаясь в органические соединения. В раститель­ных тканях копнет рация фосфора составляет 0,2-1,3% от сухой массы растенияЗапасы фосфора в пахотном слое почвы относительно невелики, порядка 2,3-4,4 т/га (в пересчете на Р 2 О 5). Из этого количества 2 /з приходится на минеральные соли ортофосфорной кислоты (Н 3 РО 4), а "/з ~~ на органические соединения, со­держащие фосфор (органические остатки, гумус, фитат и др.). Фитаты составляют до половины органического фосфо­ра почвы. Большая часть фосфорных соединений слабо раство­рима в почвенном растворе. Это, с одной стороны, снижает потери фосфора из почвы за счет вымывания, но, с другой, -ограничивает возможности использования его растениями.Основной природный источник поступления фосфора в пахотный слой - выветривание почвообразующей породы, где он содержится главным образом в виде апатитов ЗСа 3 (РО 4)2 СаР 2 и др. Трех замещенные фосфорные соли каль­ция и магния и соли полуторных оксидов железа и алюми­ния (FеРО 4 . А1РО 4 в кислых почвах) слаборастворимы и малодоступны для растений. Двух замешенные и особенно однозамещенные соли кальция и магния, тем более соли одно­валентных катионов и свободная ортофосфорная кислота раст­воримы в воде и используются растениями как главный ис­точник фосфора в почвенном растворе.

Сера входит в число основных питательных элементов, необходимых для жизни растения. Она поступает в них глав­ным образом в виде сульфата. Ее содержание в расти­тельных тканях относительно невелико и составляет в,2- 1,0% в расчете на сухую массу. Потребность в сере высока у растений, богатых белками, например у бобовых (люцерна, клевер), но особенно сильно она выражена у представите­лей семейства крестоцветных, которые в больших количествах синтезируют масла.

Недостаточное снабжение растений серой тормозит синтез серосодержащих аминокислот и белков, снижает фотосинтез и скорость роста растений, особенно надземной части. В острых случаях нарушается формирование хлоропласте» и возможен их распад. Симптомы дефицита серы побледнение и пожелтение листьев - похожи на признаки не­достатка азота, но сначала появляются у самых молодых лис и, ев. Это показывает, что отток серы из более старых листьев не может компенсировать недостаточное снабжение растений серой через корпи.

Калий - один из самых необходимых элементов минерального питания растений о содержание в тканях составляет среднем 0,5-1.2% в расчете на сухую массу. Долгое время основным источников получения калия слу­жила зола, что нашло отражение в названии элемента (происходит от слова - тигельная зола). Содержа­ние калия в клетке в 100-1000 раз превышает его уровень во внешней среде. Его гораздо больше в тканях, чем других катионов.

Запасы калия в почве больше содержания фосфора в 8 - 40 раз, а азота - в 5 - 50 раз. В почве калий может на­ходиться в следующих формах: в составе кристаллической решетки минералов, в обменном и необменном состоянии в коллоидных частицах, в составе пожнивных остатков и микроорганизмах, в виде минеральных солей почвенного раствора.

Наилучшим источником питания являются растворимые соли калия (0,5 - 2% от валовых запасов в почве). По мере потребления подвижных форм калия запасы его в почве могут восполняться за счет обменных форм, а при уменьшении последних - за счет необменных, фиксированных форм калия. Попеременное подсушивание и увлажнение почвы, а также дея­тельность корневой системы растений и микроорганизмов способствуют переходу калия в доступные формы.

В растениях калий в наибольшем количестве сосредоточен в молодых, растущих тканях, характеризующихся высоким уровнем обмена веществ: меристемах, камбии, молодых листьях, побегах, почках. В клетках калий присутствует в основном в ионной форме, он не входит в состав орга­нических соединений, имеет высокую подвижность и поэтому легко регулируется. Передвижению калия из старых в молодые листья способствует натрий, который может заме­щать его в тканях растений, прекративших рост.

В растительных клетках около 80% калия содержится в вакуолях. Он составляет основную часть катионов клеточ­ного сока. Поэтому калий может вымываться из расте­ний дождями, особенно из старых листьев. Небольшая часть этого катиона (около 1 %) прочно связана с белками мито­хондрий и хлоропластов. Калий стабилизирует структуру этих органелл. При калиевом голодании нарушается ламеллярно транулярное строение хлоропластов и дезорганизуются мем­бранные структуры митохондрий. До 20% калия клетки адсор­бируется на коллоидах цитоплазмы. На свету прочность связи калия с коллоидами выше, чем в темноте. В ночное время мо­жет наблюдаться даже выделение калия через корневую систе­му растений.

Калий служит основным прогивоионом для нейтрализации отрицательных зарядов неорганических и органических анио­нов. Именно присутствие калия в значительной степени оп­ределяет коллоидно-химические свойства цитоплазмы, что существенно влияет практически на все процессы в клетке. Калий способствует поддержанию состояния гидратации кол­лоидов цитоплазмы, регулируя ее водоудерживаюшую спо­собность. Увеличение гидратации белков и водоудерживающей способности цитоплазмы повышает устойчивость растений к засухе и морозам.

Кальций . Общее содержание кальция у разных видов растений со­ставляет 5 - 30 мг на 1 г сухой массы. Рас гения по отноше­нию к кальцию деляг на три группы: калъциефилы, калъцие фобы и нейтральные виды. Много кальция содержат бобовые, гречиха, подсолнечник, картофель, капуста, конопля, гораздо меньше - зерновые, лен, сахарная свекла. В тканях двудоль­ных растений этого элемента, как правило, больше, чем у однодольных.

Кальций накапливается в старых органах и тканях. Это связано с тем, что транспорт его осуществляется по ксиле­ме и реутилизация затруднена. При старении клеток или сни­жении их физиологической активности кальций из цитоплазмы перемещается в вакуоль и откладывается в виде нераствори­мых солей щавелевой, лимонной и других кислот. Образую­щиеся кристаллические включения затрудняют подвижность и возможность повторного использования этого кат Кальций выполняет многообразные функции в обмене ве­ществ клеток и организма в целом. Они связаны с его влиянием на структуру мембран, ионные потоки через них и биоэлектрические явления, на перестройки цитоскелета, процессы поляризации клеток и тканей и др. Кальций активирует ряд ферментных систем клетки: дегидрогеназы (глутаматдегидрогеназа, малатдетидрогеназа, глюкозо-6-фосфагдегидрогеназа. зависимая изоцитратдегидрогеназа), амилазу, аденилат- и аргининкиназы, липазы, фосфатазы. При этом кальций может способствовать агре­гации субъединиц белка, служить мостиком между ферментом и субстратом, влиять на состояние аллостерического центра фермента. Избыток кальция в ионной форме угнетает окис­лительное фосфорилирование и фотофосфорилирование иона.

От недостатка кальция в первую очередь стра­дают молодые меристематические ткани и корневая система. У делящихся клеток не образуются новые клеточные стенки и в результате возникают многоядерные клетки, характерные для меристем с дефицитом кальция. Прекращается образо­вание боковых корней и корневых волосков, замедляется рост корней. Недостаток кальция приводит к набуханию пектиновых веществ, что вызывает клеточных сте­нок и разрушение клеток. В результате корни, листья, отдель­ные участки стебля зашивают и отмирают. Кончики и края листьев вначале белею 1. а затем чернеют, листовые пластинки и скручиваются. На плодах, в запасающих и сосудистых тканях некротические участки.

Магний. По содержанию в растениях магний занимает четвертое место после калия, азота и кальция. У высших растений среднее его содержание в расчетена сухую массу 0.02 - 3.1% у водорослей 3,0 - 3,5%. Особенно мною его в растениях короткого дня - кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. 1 кг свежих листьев содержит 300-800 мг магния, из них 30-80 мг (т. е. 1/ 10 часть) входит в состав хлорофилла. Особенно много магния в молодых клетках и растущих тканях, а также в генера­тивных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре (для кукурузы соответственно 1,6, 0,04 и 0,19% на сухую массу).

Действие магния на другие участки обмена веществ чаще всего связано с его способностью регулировать работу ферментов и значение его для ряда ферментов уникально. Недостаток магния приводит к уменьшению содержания фосфора в растениях, даже если фосфаты в достаточных количествах имеются в питательном субстрате, тем более, что транспортируется фосфор по растению в основном в орга­нической форме. Поэтому дефицит магния будет тормозить образование фосфорорганических соединений и соответствен­но распределение фосфора в растительном организме. При недостатке маг­ния нарушается формирование пластид: матрикс хлоропластов просветляется, граны слипаются. Ламеллы стромы разры­ваются и не образуют единой структуры, вместо них появ­ляется много везикул. При магниевом голодании между зе­леными жилками появляются пятна и полосы светло-зеле­ного, а затем желтого цвета. Края листовых пластинок при­обретают желтый, оранжевый, красный или темно-красный цвет, и такая «мраморная» окраска листьев наряду хлоро­зом служит характерным признаком нехватки магния. На более поздних стадиях магниевого голодания светло-желтые и бело­ватые полоски отмечаются и на молодых листьях, свидетель­ствуя о разрушении в них хлоропласте», а затем и каротиноидов, причем зоны листа, прилежащие к сосудам, дольше остаются зелеными. Впоследствии развиваются хлороз и нек­роз, затрагивая в первую очередь верхушки листьев.

Железо . Среднее содержание железа в растениях составляет 0,02-0,08%. В составе соединений, содержащих гем (все цитохромы, каталаза. и в негемовой форме железо принимает участие в функционировании ос­новных редокс-систем фотосинтеза и дыхания. Вместе с молиб­деном железо участвует в восстановлении нитратов и фик­сации молекулярного азота клубеньковыми бактериями, входя в состав нитратредуктазы и нитрогеназы. Железо катализирует также начальные этапы синтеза хлорофилла (образование 8-аминолевулиновой кислоты и прогопорфиринов). Поэтому недостаточное поступление железа в растения в условиях переувлажнения и на карбонатных почвах приводит к снижению интенсивности дыхания и фотосинтеза и выра­жается в пожелтении листьев (хлороз) и быстром их опадении.

Кремний обнаружен у всех растений. Особенно много его в клеточных стенках. Растения, накапливающие кремний, имеют прочные стебли. Недо­статок кремния может задерживать рост злаков (куку­руза, овес, ячмень) и двудольных растений (огурцы, томаты, табак, бобы). Исключение кремния во время репродуктив­ной стадии вызывает уменьшение количества семян, при этом снижается число зрелых семян. При отсутствии в питатель­ной среде кремния нарушается ультраструктура клеточных органелл.

Алюминий также относится к макроэлементам, в которых нуждаются только некоторые растения. Предполагается, что он имеет большое значение в обмене веществ у гидрофитов. Интересно отметить, что этот катион концентрируют папо­ротники и чай. При недостатке алюминия у чай­ного листа наблюдается хлороз, однако высокие концентрации токсичны для расмений. В высоких дозах алюминий связы­вается в клетках с фосфором, что в итоге приводит к фосфор­ному голоданию растений.

Питание растений - это процесс поглощения и усвоения ими питательных веществ, необходимых для построения тканей и органов и осуществления всех жизненных функций. Питание - составная часть обмена веществ у растений.

Большинство высших растений в отличие от других организмов, например животных, строят свое тело из простых соединений - углекислого газа, воды, минеральных солей. Все необходимые элементы питания они получают из воздуха и почвы. Из воздуха через листья растения усваивают углекислый газ, который с помощью солнечной энергии преобразуют в органическое вещество своего тела. Так осуществляется фотосинтез , который называют воздушным питанием растений.

Из почвы через корни в растения поступают вода и ионы минеральных солей, т. е. происходит минеральное питание. Низшие растения: грибы, водоросли, лишайники - усваивают питательные элементы всей поверхностью тела.

Для питания растениям необходимы углерод, кислород, водород, азот, фосфор, калий, кальций, сера, магний, железо и микроэлементы, которые нужны им в небольшом количестве. Это медь, марганец, молибден, бор, цинк, кобальт и другие элементы. В составе растительных организмов обнаружены почти все химические элементы, существующие на нашей планете. Если растение не получает хотя бы один нужный элемент питания, то его основные жизненные функции резко нарушаются. Избыток других элементов не заменяет недостающих веществ. Это происходит потому, что питательные вещества выполняют в растительных тканях различные функции.

Потребности растений в элементах питания неодинаковы. Одни растения, например корнеплоды, нуждаются в повышенных дозах калия, другие - капуста, огурец - требуют много азота. У некоторых растений обнаружена потребность в натрии (сахарная свекла), кобальте (горох, соя и другие бобовые).

Как же происходит усвоение питательных веществ и их дальнейшее превращение в тело растительного организма? В процессе фотосинтеза из углекислого газа и воды, поступающей из почвы через корни, в листьях образуются первичные органические продукты - ассимиляты (сахароза и др.). Из клеток листа они поступают в ситовидные трубки флоэмы (ткани, проводящей питательные вещества от листьев к корням) и перемещаются вниз по стеблю, распространяясь затем по его тканям.

Корни растений всасывают из почвенного раствора ионы минеральных элементов, которые проникают внутрь корневых клеток. Затем минеральные вещества вместе с водой поступают в сосуды ксилемы (ткани, по которой питательные вещества движутся от корней к листьям) и по ним передвигаются в листья.

Одни элементы (калий, натрий) подаются в наземные органы в неизменном состоянии, другие - в виде органических соединений. В листьях минеральные элементы взаимодействуют с ассимилятами. Здесь образуются разнообразные органические и органо-минеральные соединения . Из них растения и строят свои ткани и органы.

Минеральное и воздушное питание растений - два звена одного физиологического процесса. Только при достаточном минеральном питании фотосинтез протекает интенсивно, и растения хорошо растут и развиваются.

Земледелец может управлять питанием растений, внося в почву минеральные и органические удобрения в нужных дозах и в оптимальные сроки, поливая растения. В защищенном грунте можно регулировать и воздушное питание, если повысить концентрацию углекислого газа в воздухе и использовать дополнительное освещение.

Очень важно уметь определять потребности сельскохозяйственных культур в том или ином элементе минерального питания, т. е. проводить диагностику питания растений.

При недостатке азота, фосфора, калия или другого элемента изменяются размер и окраска листьев, строение органов. Например, если растению не хватает азота, листья его становятся бледно-зелеными, мелкими, стебли - тонкими, у многих культур (плодовых, хлопчатника) опадают завязи.

Если недостает фосфора, то листья томата темно-зеленые с голубоватым оттенком, кукурузы - фиолетовые, капусты - красноватые. Молодые листья мелкие, по краям нижних листьев появляются участки отмершей ткани бурого или черного цвета. Развитие растений замедляется, особенно фазы цветения и созревания.

При калийном голодании листья желтеют, буреют, затем отмирают ткани по их краям, а позднее между жилками. Цвет листьев более темный с голубоватым или бронзовым оттенком. У растений укорочены междоузлия, они вянут и полегают.

Создание наилучших условий для питания растений - наиболее эффективное средство управления урожаем сельскохозяйственных культур. Это основная задача земледельца.


Следующее:

1. Какие функции выполняет корень?

Корни закрепляют растение в почве и прочно удерживают его в течение всей жизни. Через них растение получает из почвы воду и растворённые в ней минеральные вещества. В корнях некоторых растений могут откладываться и накапливаться запасные вещества.

2. Что такое корневой волосок? Какую функцию он выполняет?

Корневой волосок - относительно длинный вырост наружной клетки корня в зоне всасывания. Под клеточной оболочкой в нём находятся цитоплазма, ядро, бесцветные пластиды и вакуоль с клеточным соком.

Корневые волоски осуществляют всасывание питательных веществ и воды.

3. Какие минеральные вещества вам известны?

Азот, калий, фосфор, магний, сера.

Вопросы

1. Какие вещества необходимы для минерального питания растения?

Азот, калий, фосфор, магний, сера, бор, медь, цинк, кобальт и др.

2. Как растения поглощают питательные вещества?

Водоросли, а также некоторые водные растения усваивают питательные вещества всей поверхностью тела. Высшие растения поглощают их из почвы через корни. Вода и минеральные соли поступают в растение через корневые волоски.

3. Что такое корневое давление?

Корневое давление - давление в проводящих сосудах корней, обеспечивающее передвижение воды и растворённых в ней минеральных веществ к надземным органам растения.

Поглощение воды корнем зависит от её температуры. Холодная вода плохо поглощается корнями.

5. Какие виды удобрений вы знаете?

В почву вносят органические и минеральные удобрения.

Органические удобрения (от слова «организм») - это отходы жизнедеятельности животных (навоз, птичий помёт) или отмершие части организмов животных и растений (перегной, торф).

В зависимости от содержания минеральных веществ различают азотные, фосфорные и калийные минеральные удобрения.

Кроме того, широко используют микроудобрения, в которых содержатся такие элементы, как бор, медь, цинк, кобальт и др.

6. Какое влияние на рост и развитие растений оказывают азот, калий, фосфор?

7. Что такое подкормка?

Подкормка растений – восполнение содержания минеральных веществ в почве в ходе внесения органических и минеральных удобрений.

Подумайте

1. Правильно ли поступают люди, убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов?

Убирая осенью опавшую листву с газонов в скверах и парках населённых пунктов, люди поступают неправильно, т.к. опавшая листва, погибшие растения и животные перегнивают и обогащают почву минеральными веществами.

2. С чем связаны особенности строения клетки корневого волоска?

Корневой волосок - относительно длинный вырост наружной клетки корня, что значительно увеличивает всасывающую поверхность корня.

Корневые волоски покрыты слизью и тесно соприкасаются с частицами почвы. Благодаря этому облегчается всасывание воды с растворёнными минеральными веществами.

Задания

1. Возьмите два одинаковых растения колеуса средних размеров. Поставьте их в светлое тёплое место и три дня не поливайте. Затем регулярно поливайте: первое растение - ежедневно утром и вечером, расходуя на каждый полив по 50 мл воды, второе растение - три раза в неделю (понедельник, среда, пятница), расходуя на каждый полив по 200 мл воды. Опыт проводите в течение месяца. Результаты наблюдений записывайте в тетрадь. Сравните результаты наблюдений и сделайте вывод.

Результат опыта будет зависеть от времени года: летом колеус поливают обильно(т.е. в таком случае подойдет первый вариант), осенью и зимой полив сокращают(лучше будет развиваться растение с поливом 3 раза в неделю).

2. Для подготовки к изучению прорастания семян в стакан из тонкого прозрачного стекла поместите промокательную бумагу так, чтобы она плотно прилегла к стенкам стакана. На дно стакана налейте немного воды. Между стеклом и промокательной бумагой поместите зерновки пшеницы, ржи, ячменя или овса и наблюдайте за их прорастанием. В другой стакан положите семена фасоли или гороха также для наблюдения за прорастанием. В третий стакан поместите семена фасоли или гороха, отделив у них одну семядолю. Следите, чтобы семена не высохли. Установите, когда они набухнут. Проследите, когда у проростков появятся корни, сколько их разовьётся через некоторое время, как происходят рост и дальнейшее развитие проростков. Свои наблюдения запишите.

Для разных семян сроки набухания сильно отличаются:

Злаки (пшеница, рожь, овёс, ячмень): 6-8 часов.

Бобовые (горох, фасоль): 8-12 часов.

Время для прорастания своё для каждых семян:

Злаки (пшеница, рожь, овёс, ячмень): 6-10 часов

Бобовые: 10-16 часов.

Через 8-10 дней будет видно, что проросток семени с двумя семядолями оказался более крупным, сильным, чем проросток с одной семядолей. Это объясняется тем, что кроме воды и воздуха важнейшим условием прорастания семян являются содержащиеся в них запасные питательные вещества. Они обеспечивают первоначальное питание зародыша, его способность к увеличению размеров и числа клеток и формирование проростка. Если запасных питательных веществ в семени мало, то развитие зародыша происходит медленно.

После появления зародышевого корешка у гороха наблюдается формирование боковых корней – начинает формироваться стержневая корневая система, у пшеницы – мочковатая.